TVFEMD尋優(yōu)分解與智能算法優(yōu)化的FLN土壤 含水量預(yù)測(cè)

打開文本圖片集
關(guān)鍵詞:時(shí)變?yōu)V波經(jīng)驗(yàn)?zāi)B(tài)分解(TVFEMD);算法優(yōu)化;快速學(xué)習(xí)網(wǎng)(FLN);土壤含水量;預(yù)測(cè)中圖分類號(hào):S271;TV93 文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):0439-8114(2025)05-0147-08DOI:10.14088/j.cnki.issn0439-8114.2025.05.023
TVFEMD optimization decomposition and FLN-based soil moisture content prediction using intelligent algorithm optimizations
TIANYu1,CUIDong-wen2
1.YunnanInstituteofWater&HydropowerEngineeingInvestigation,DesignandResearch,Kunming 65O1,China; 2.Wenshan Zhuang and Miao Autonomous Prefecture Water Bureau,Wenshan 663Ooo,Yunnan,China)
Abstract:BasedotheobservedsoilmosturecontentdatafromlO,2,and40cmsoillyersatTanxingadPojiaostationsinYunnanProvince,a prediction model(TVFEMD-BSLO/AO/IVYA/EGO/PSO-FLN)wasconstructedbyimprovingthetime-varying filter empirical modedecomposition(TVFEMD)andfastlearning network(FLN)methods toenhancethetime-series predictionaccuracy of soil moisturecontent.Bycomparingtheperformanceofdiferentoptimzatioalgoritms,asuperiormodelingapproachasprovidedforsoilmoistureprediction.Theresultsshowed thattheTVFEMDdecompositionperformancewasprimarilyinfluencedbytwo key parameters:Bandwidth thresholdand B-splineorder.Optimizing these twparametersusing theIVYAalgorithmimproved the timeseriesdecompositionqualityand further enhanced themodel’sprediction performance.The TVFEMD-BLSO/AO/IVYA/EGO-FLN modeldemonstratedoutstandingpredictionperformanceonthetrainingset,withameanabsolutepercentageerror(MAPE)of 0.002 % \~0.077% and a coefficient of determination ( R2 )of 0.999 7\~1.000 0. The MAPE in the prediction set was 0.006%\~0.459 % , and R2 was0.996 6\~1.000 0.Compared with the TVFEMD-PSO-FLN model,the TVFEMD-BLSO/AO/IVYA/EGO-FLN model showedsignificantimprovements inbothfitingperformanceandpredictionaccuracyOptimizingFLNhyperparametersusingBLSO, AO,IVYA,ndEGOagorithmseffectivelyimprovedmodelpeformance,withtheIVYAalgorithmexhibitingthemostnotableoptimization effect.
Key Words:time-varyingfilter empirical modedecomposition(TVFEMD);algorithmoptimization;fastlearning network(FLN); soil moisture content;prediction
土壤含水量是描述土壤干濕程度,反映旱情最直接、最重要的指標(biāo)之一,提高土壤含水量時(shí)間序列預(yù)測(cè)精度對(duì)于旱情預(yù)警、農(nóng)業(yè)生產(chǎn)、生態(tài)系統(tǒng)保護(hù)和水資源管理具有重要意義。(剩余10412字)