基于Stacking集成算法的中國南方地區(qū)糧食產(chǎn)量預(yù)測

打開文本圖片集
關(guān)鍵詞:Stacking集成算法;糧食產(chǎn)量;中國南方;預(yù)測
中圖分類號:F326.11;S126 文獻(xiàn)標(biāo)識碼:A
文章編號:0439-8114(2025)05-0155-05
DOI:10.14088/j.cnki.issn0439-8114.2025.05.024 開放科學(xué)(資源服務(wù))標(biāo)識碼(OSID):
Grain yield prediction in southern China based on Stacking ensemble algorithm
MADian-jing',ZHAO Jia-song1,YAN Wei-yu1,DUANGuang-jun1,LIU Zhen-yang2,WU Shao-tian’ (1.School of Big Data,Yunnan Agricultural University,Kunming 65O2O1,China; 2.School of Data Science and Engineering,Kunming City College,Kunming 65Oo32,China)
Abstract:Basedonthe grainyielddataand11-dimensionalrelevantactorsfromAnhui,Hubei,Hunan,Jiangsu,andSichuanprov inces insoutherChinabetwen1998and2O22,theBP-SVR-Stacking grainyieldpredictionmodelbasedonthe Stacking ensemble algorithmwasdevelopedandcomparativelyanalyzedwiththeBPneuralnetwork modelandSVRmodel.Theresultsindicatedthatthe mean absolute error ( MAE )and mean absolute percentage error ( MAPE )of the BP-SVR-Stacking model were significantly lower than thoseof theBPneuralnetworkmodelandSVRmodel,hichdemonstratedthesuperiorpredictioncapabilityoftheBP-SVR-tacking modeloversingle machinelearningmodels.ComparedwiththeBPneuralnetworkmodelandSRmodel,thecoeficientofdetermination ( R2 )of the BP-SVR-Stacking modelincreasedby0.124and0.122 respectively,suggesting thatthe BP-SVR-Stacking model possessed excellent fiting capability and prediction performance.
Key Words:Stacking ensemble algorithm;grain yield;southern China;prediction
糧食產(chǎn)量是一個涉及生態(tài)學(xué)、社會學(xué)、經(jīng)濟(jì)學(xué)和統(tǒng)計學(xué)的復(fù)雜問題,其產(chǎn)量受環(huán)境、科技、經(jīng)濟(jì)、政策和勞動力等多重因素的影響[1。(剩余7955字)