考慮多點(diǎn)監(jiān)測(cè)數(shù)據(jù)的混凝土壩智能預(yù)警分析方法

打開文本圖片集
關(guān)鍵詞:混凝土壩;多點(diǎn)變形監(jiān)測(cè);預(yù)警指標(biāo);K-means聚類法;ConvLSTM模型;3-Sigma原則中圖分類號(hào):TV62 文獻(xiàn)標(biāo)志碼:Adoi:10.3969/j.issn.1000-1379.2025.07.024引用格式:,李炎隆,張野,等.考慮多點(diǎn)監(jiān)測(cè)數(shù)據(jù)的混凝土壩智能預(yù)警分析方法[J].人民黃河,2025,47(7):150-155.
Intelligent Early Warning Analysis Method for Concrete Dams Considering Multi-Point Monitoring Data
ZHONG Wen1,LI Yanlong1, ZHANG Ye1, ZHOU Tao2, KANG Xinyu1,YANG Tao3, LI Kangping4 (1.StateKeyLboratoryofWaterEgeringEolodEnviontinAidreaXi'nUivesityfToloXi'na; 2.Huanghe HydropowerDevelopmentCo.,Ltd.,,Xining 810o,China;3.ChinaYangtzePowerCo.,Ltd.,Yibin 644612,China; 4.Power China Northwest Engineering Corporation Limited,Xi’an 71OO65,China)
Abstract:Inodertohancetheaccacyofarlywaringincocretedmsafetymonitoring,isstudypropedanintellgentearlyainganalysismetdbasedonulti-poitmitoringdataimingtoovercoetesuseptibilityoftraditioalsingle-poitmetodstoo structuralinteferec.FirstlyK-eanslusterngmethodasusedtoartiomoitoringontsihsiilaeforationpatesn ConvLSTMmodelwasemployed toextractthespatial-temporalfeaturesoftedformationsequenesfromeachclusterandmakepredictions. Byanalyzingtheresidualsequencesanddeterminingtheearlywarning treshldbasedonthe3-Sigmapriciple,single-pointearlywaing results weregenerated.Finall,teearlywaringresultsfromallusterswereitegratedtoensurethatanearlywaingwastriggdonly whenallmoitorgpoitswitinaustereibitaomalssiultaneoslyattesaetie.Experimentalresultsshowatteproposd methodreducesthefalsealamsandmiseddetectioscausedbyextealdisturbancesinsingle-pointearlywaingmetodsbyintegatig multi-point information,thereby improving the reliabilityand stabilityof the early warning system.
Keywords:concretedam;multi-ointdeforationmonitoring;arlywaingindicators;K-meansclustering method;onSTMmodel;3 Sigma principle
0 引言
大壩作為重要的水利設(shè)施,其安全性直接關(guān)系到人民生命財(cái)產(chǎn)和生態(tài)環(huán)境的安全[1-2]。(剩余7194字)