t-SNE</sub> 算法和KernelPCA算法將高維詞向量轉(zhuǎn)換為低維度的向量,使用K-means算法對其進行聚類可視化。研究結(jié)果表明:在數(shù)據(jù)抽取評估方面,一致性、完整性、準確性的評估均值在0.800以上,均方差小于0.050。對比PCA和 <img src="/qkimages/rmhh/rmhh202507/rmhh20250716-1-l.jpg" with="38px" style="vertical-align: middle;"> 兩種降維方法,通過輪廓系數(shù)(SilhouetteScore,SS)評估聚類效果,PCA的SS指標值為 0.359,t-SNE 的SS指標值為0.336,結(jié)果顯示PCA表現(xiàn)更優(yōu)。Bert模型具有較強的上下文理解能力,更加適合泥石流災(zāi)害數(shù)據(jù)抽取,依托Word2Vec模型的CBOW架構(gòu)獲取詞向量,結(jié)果顯示PCA在評價指標上整體表現(xiàn)優(yōu)于 <sub>t-SNE</sub> 。針對泥石流災(zāi)害數(shù)據(jù)多源和語義一致性問題,涵蓋從數(shù)據(jù)抽取、降維到聚類的全過程,為實現(xiàn)泥石流災(zāi)害數(shù)據(jù)的語義融合與統(tǒng)一管理提供了有效支持。-龍源期刊網(wǎng)" />

特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

基于Word2Vec模型的泥石流多源災(zāi)害數(shù)據(jù)融合研究

  • 打印
  • 收藏
收藏成功


打開文本圖片集

關(guān)鍵詞:泥石流災(zāi)害;知識抽?。毁|(zhì)量評估;知識融合;Word2Vec

中圖分類號:P694文獻標志碼:A doi:10.3969/j.issn.1000-1379.2025.07.016

引用格式:,,,等.基于Word2Vec模型的泥石流多源災(zāi)害數(shù)據(jù)融合研究[J].人民黃河,2025,47(7):97-102.

Research on Multi-Source Debris Flow Disaster Data Fusion Based on Word2Vec Model

JIN Lei1,XU Peng2,LI Jie2,CAI Yingchun1,3,YANG Haibo1,3

(1.School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 45ooo1,China; 2.Guiyang Engineering Corporation Limited,Power Construction Corporation of China,Guiyang 550081,China; 3.NationalKeyLaboratoryofTunnel Boring MachineandInteligentOperationand Maintenance,Zhengzhou450oo1,China) Abstract:Underkgdofdeelotoftateodtialteleles,s flowdisastersisilseitactesgiuouedessdaillo tionmodellibrasuchsjbdLteadectustucuredebrsfsastedatabseetlygegaigl intoadatabasetoachevedatafusionBymappingwodsintoaigdimesioalspacetrouhteWordVecodel,texualvocablaryaso vertedintoalvadtoprsentatiosndKeeCAereaplidtoucetimesioalitoftvctorsdthKmeansalgoitmwasusedforlusteringandvisualization.Theresultssowtatindataextractionevaluation,theveragevaluesofosistecy, completenesandacuacyareallabove8Oiheansuaredevaoselow5.CmparingthCAandtSNEdimnsioalitucto metodsusingeeScoSS)taatecseiscSSvue59pefogtd, whichhasanSSueof.3einmostateattCAdesperpefoancditioallhertdeliis strongontealuestadigsoiablefoebsoastedataetaceveragigthOieureftedecod eltoobtaind,taltftallaaoegeiggsdyuli sourcedebrisfasteatadaticsisteissdyduseptchataeactiosioalitutd clusteringuliatelyprovdingabeakouhhcalethoebrisdasterdataogsifatiodmanticocyfu sion,as well as an important technical solution for disaster data integration.

Key words: debris flow disaster;knowledge extraction;quality evaluation; knowledge fusion;Word2Vec

0 引言

受地理與氣候條件的綜合影響,我國泥石流災(zāi)害發(fā)生頻率較高,是世界上受該類災(zāi)害影響較為嚴重的國家之一[1-5]。(剩余9385字)

monitor