基于Word2Vec模型的泥石流多源災(zāi)害數(shù)據(jù)融合研究

打開文本圖片集
關(guān)鍵詞:泥石流災(zāi)害;知識抽?。毁|(zhì)量評估;知識融合;Word2Vec
中圖分類號:P694文獻標志碼:A doi:10.3969/j.issn.1000-1379.2025.07.016
引用格式:,,,等.基于Word2Vec模型的泥石流多源災(zāi)害數(shù)據(jù)融合研究[J].人民黃河,2025,47(7):97-102.
Research on Multi-Source Debris Flow Disaster Data Fusion Based on Word2Vec Model
JIN Lei1,XU Peng2,LI Jie2,CAI Yingchun1,3,YANG Haibo1,3
(1.School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 45ooo1,China; 2.Guiyang Engineering Corporation Limited,Power Construction Corporation of China,Guiyang 550081,China; 3.NationalKeyLaboratoryofTunnel Boring MachineandInteligentOperationand Maintenance,Zhengzhou450oo1,China) Abstract:Underkgdofdeelotoftateodtialteleles,s flowdisastersisilseitactesgiuouedessdaillo tionmodellibrasuchsjbdLteadectustucuredebrsfsastedatabseetlygegaigl intoadatabasetoachevedatafusionBymappingwodsintoaigdimesioalspacetrouhteWordVecodel,texualvocablaryaso vertedintoalvadtoprsentatiosndKeeCAereaplidtoucetimesioalitoftvctorsdthKmeansalgoitmwasusedforlusteringandvisualization.Theresultssowtatindataextractionevaluation,theveragevaluesofosistecy, completenesandacuacyareallabove8Oiheansuaredevaoselow5.CmparingthCAandtSNEdimnsioalitucto metodsusingeeScoSS)taatecseiscSSvue59pefogtd, whichhasanSSueof.3einmostateattCAdesperpefoancditioallhertdeliis strongontealuestadigsoiablefoebsoastedataetaceveragigthOieureftedecod eltoobtaind,taltftallaaoegeiggsdyuli sourcedebrisfasteatadaticsisteissdyduseptchataeactiosioalitutd clusteringuliatelyprovdingabeakouhhcalethoebrisdasterdataogsifatiodmanticocyfu sion,as well as an important technical solution for disaster data integration.
Key words: debris flow disaster;knowledge extraction;quality evaluation; knowledge fusion;Word2Vec
0 引言
受地理與氣候條件的綜合影響,我國泥石流災(zāi)害發(fā)生頻率較高,是世界上受該類災(zāi)害影響較為嚴重的國家之一[1-5]。(剩余9385字)