基于SMOTE策略的數(shù)據(jù)不完整時滑坡易發(fā)性評價

打開文本圖片集
關(guān)鍵詞:滑坡易發(fā)性;不完整滑坡數(shù)據(jù);隨機(jī)森林;神經(jīng)網(wǎng)絡(luò);合成少數(shù)過采樣;黃河上游中圖分類號:TV62;TV882.1 文獻(xiàn)標(biāo)志碼:A doi:10.3969/j.issn.1000-1379.2025.07.009引用格式:,,,等.基于 SMOTE策略的數(shù)據(jù)不完整時滑坡易發(fā)性評價[J].人民黃河,2025,47(7):50-58.
Landslide Susceptibility Assessment Using SMOTE Strategy Under Incomplete Data Conditions
MENG Jinhao’,SUN Benbo1,WANG Juan1,HUANG Chengfang1.2 (1. School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 45ooo1,China; 2. School of Architecture,Zhengzhou University,Zhengzhou 450oo1,China)
Abstract:Thesstfslidetiliipoasiseolalserredool,utlepe dataareofenmissngocomplete,makingitdifultfocelearingmodelstocoductauateandreliablesusptibitoeling. Basedonrandomforest(RF)andartficialneuralnetwork(AN)odels,tispperdisusedteaccuracyhangesoflandslidesuseptibility assessment results and susceptibility zoning characteristics under diferent missing ratios ( 10%-50% ) and regional missing conditions. Afterexpandingthesamplebyusingthesynthticminortyoversamplingtechique(SMOTE),tepredictionresultswerecomparedandanalyzedtoverifyteectivenessofsmpleexpansion.Theesultsshowthatwithteincreaseoftheproportionofmisingsamples,eodel accuracygradualldecrease,utthedcreaseilimitedTepredictedareasofteRFandANNmodelsintehgh-riskareasabovethe higher level are reduced by up to 7.0% and 5.5% respectively. Under regional missing conditions,the accuracy of the evaluation results varies greatly,and the maximum predicted area of high-level prone areas is reduced by 11.1% and 11.2% respectively. After expanding the sample,the accuracy of the evaluation results decreases slightly with the increase of the supplement ratio. When 50% of the samples are supplemented,the predicted areas of the high-risk areas of the two models are reduced by 14.0% and 19.5% respectively. Generating landslide samplesasedonthe SMOTEtrategycanprovideanefectivemethodforlandslidesusceptibilityevaluationmodelinginareas withising landslide data.
Key words:landslidesusceptibilt;incompleteladslidedata;randomforest;neuralnetwork;sytheticminorityoversampling;uppe Yellow River
0 引言
黃河流域地質(zhì)運(yùn)動活躍、地貌演化迅速、氣候區(qū)域差異顯著,導(dǎo)致流域重大災(zāi)害類型多樣[1]、分布廣且突發(fā)性強(qiáng),威脅黃河流域生態(tài)環(huán)境與地質(zhì)安全[2]。(剩余11425字)