基于深度自編碼器的混凝土壩變形異常檢測模型

打開文本圖片集
關(guān)鍵詞:混凝土壩;變形監(jiān)測;異常檢測;自編碼器;深度學(xué)習(xí)中圖分類號:TV642 文獻(xiàn)標(biāo)志碼:A doi:10.3969/j.issn.1000-1379.2025.07.022用格式:,,,等.基于深度自編碼器的混凝土壩變形異常檢測模型[J].人民黃河,2025,47(7):137-143.
Concrete Dam Deformation Anomaly Detection Model Based on Deep Autoencoder
KANG Xinyu1,LI Yanlong',ZHANGYe1,ZHOU Tao2,ZHONGWen’,YANG Tao3 (1.StateKeyLaboratoryofWaterEgineingEcologndEvoeninAridAra,XianUivesityofTcholog,Xianina; 2.Huanghe Hydropower DevelopmentCo.,Ltd.,Xining 810o0,China;3.ChinaYangtzePowerCo.,Ltd.,Yibin 644612,China) Abstract:Anunsupervisedanomalydetectionmodelbasedonadputoencoderwasproposedtoaddressanomalousreadingsinconcrete damdeformationmonitoring,withtheobjectiveofenhancingdetectionacuracyandautomation.Theautoencoderwas trainedinanusuper visedmaneronnoraldefomationdatatolearlow-dimensionalfeaturerepresentationsandwassubsequentlyemploedtorebuildcoming measurements.Measurementsexhitingsignificantdeviationsetwenobservedandrebuildvalueswereclasifiedasanomales.Teresult showsthat theproposedmodelachievesover97%accuracyianomalydetectionandisdemonstratedtoperforeliablyundervarioutesting conditions.Conseqentlytheeutocoderbdroachisableofectielydentigfoatiaolsioeda, exhibiting robust and precise detection capabilities.
Key words: concrete dam; deformation monitoring;anomaly detection;autoencoder; deep learning
0 引言
混凝土項具有卓越的承載能力、優(yōu)異的耐久性及良好的適應(yīng)性,已成為水庫大壩建設(shè)的首選類型[1-4]然而,在混凝土壩長期服役過程中,外部荷載變化(如水位波動、氣溫變化等)與內(nèi)部物理化學(xué)侵蝕(如碳化、硫酸鹽侵蝕等)持續(xù)對壩體造成負(fù)面影響,威脅大壩的安全運行[5]。(剩余10445字)