基于典型小概率法-LSTM的大壩預(yù)警技術(shù)研究

打開文本圖片集
關(guān)鍵詞:大壩安全;典型小概率法;LSTM;監(jiān)測預(yù)警;三門峽水庫中圖分類號:TV87 文獻標志碼:A doi:10.3969/j.issn.1000-1379.2025.07.013引用格式:,,,等.基于典型小概率法-LSTM的大壩預(yù)警技術(shù)研究[J].人民黃河,2025,47(7):78-83.
Research on Dam Early Warning Technology Based on Typical Small Probability Method-LSTM
LI Mingyang 1,2,3 , DENG Yu 1,3 , ZHANG Baosen 1,3 , GUO Jinjun2 (1.Yellw River Institute of Hydraulic Research, YRCC, Zhengzhou 450oO3,China; 2.School of Water Conservancy and Transportation, Zhengzhou University,Zhengzhou 45ooo1,China; 3.Research Center on Levee Safety and Disaster Prevention,MWR,Zhengzhou 45OOO3,China)
Abstract:Teperatioalsusofteameniaeseiitcallypacswatersuplsecuritdfdprevetofdowsai iesalong eYelowRiverHowever,onventioaloitoigapproacsrelingonssortwoksandmanualbservatiossuferfroin adequatereal-tpefoaedisuentpreTdsselatios,issdeveedtegadrld elincorporatingulti-soucedataanddamicesponsemechanisms.Themethodologinvoledcalulatingwaingtresholdsforrialprameters(e.g,damdisplacementandsepagepresure)usingtheTypicalSmallProbabilityMethod,coupledwithanLSTM-basedpredic tionmodelforficient waringtoughthresholdcomparisonValidationusingtheSanmenxiaReservoircasedemonstratesthemodel’ssuperior predictive accuracy compared to traditional methods.
KeyWords:dam safety;typical smallprobabilitymethod;LSTM;monitoring and early warning;Sanmenxia Reservoir
0 引言
黃河三門峽水庫作為黃河流域防洪與水資源調(diào)配的重要樞紐,其安全運行直接影響下游城市供水與生態(tài)穩(wěn)定,不僅是黃河流域水資源調(diào)配和防洪減災(zāi)的樞紐工程,也是保障周邊地區(qū)經(jīng)濟社會穩(wěn)定發(fā)展的生命線[1-3]。(剩余8227字)