基于深度學(xué)習(xí)模型的混凝土壩變形預(yù)測研究

打開文本圖片集
關(guān)鍵詞:混凝土壩;變形監(jiān)測;變形預(yù)測;LSTM;TCN中圖分類號(hào):TV642 文獻(xiàn)標(biāo)志碼:A doi:10.3969/j.issn.1000-1379.2025.07.023引用格式:,,,等.基于深度學(xué)習(xí)模型的混凝土壩變形預(yù)測研究[J].人民黃河,2025,47(7):144-149,155.
Research on Deformation Prediction of Concrete Dams Based on Deep Learning Models
SU Xiaojun1,XU Zengguang1, ZHANG Ye1,KANG Xinyu', ZHOU Tao2,YANG Tao3,LI Kangping4 (1.State KeyLaboratoryof WaterEngineering EcologyandEnvironment inAridArea,Xi’an Universityof Technology,Xi'an 710048,China;2.Huanghe Hydropower Development Co.,Ltd., Xining 81000,China; 3.China Yangtze Power Co.,Ltd.,Yibin 644612,China;4.Power China Northwest Engineering Co.,Ltd.,Xi'an 710065,China) Abstract: Inordertoimprovetheacuracyofpredictingconcretedamdeformationsandensuredamstructuralsafety,thispaperproposeda predictionmodelcombiningTemporalConvolutionalNetworks(TCN)andLongShort-TermMemory(LSTM)networks,imingthelimitationsofexistingpredictionmodelsincaptuingcomplexdeformationfeaturesandlong-tedependencies.TCNwasusedtoextractteporal featuresfromdeformationdta,hileLSTMcapturedlongtedependenciesiscombinationsignificantlyehancedteodel’sabilityo predictomplexdeformationpatesExperimentalesultsemonstratetat,compaedwithvariousinteligentpedictionodels,eo posedmodelaccuratelysiulatestdadfaprocsndcheshigerpredictiouacyFurteore,eodelosates asignificantadvantageincapturigomplexdefoationcharacteisticsofconcretedams,providingaovelteciquefordamsafetoi ring.
Key words:concrete dam;deformation monitoring;deformation prediction;LSTM;TCN
0 引言
水庫大壩作為重要的基礎(chǔ)設(shè)施,直接關(guān)系到庫區(qū)人民的生命財(cái)產(chǎn)安全,一旦發(fā)生事故,后果將極為嚴(yán)重[1-3]。(剩余10114字)