基于雙曲空間的無監(jiān)督視頻異常檢測(cè)方法

打開文本圖片集
中圖分類號(hào):TP391 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1001-3695(2025)07-042-2234-07
doi:10.19734/j. issn.1001-3695.2024.08.0371
Abstract:Inthefieldofvideoanomalydetection,anomalouseventsoftendemonstratetemporalcontinuityandsimlarityExisting unsupervised methods typicallysegment videos into multipleclipsandrandomlyselectsubsets for training,disrupting the continuityofanomalouseventsandcausing thelossofcriticalspatiotemporalinformation.AditionallycurrntEuclidean space-basedmethodsencounterlimitationsinembeddngspacedimensionalitymakingitdificulttoefectivelycapturethelatent geometrichierarchyofvideodata.Toaddress these isues,thispaper introducedanovelunsupervisedvideoanomalydetection methodbasedonhyperbolic space.Itdesignedaspatiotemporalfeatureconstruction(STFC)module toextract temporalcorrelationsand featuresimilaritiesamong videosegments,mbedding themintoLorentzandPoincaréballhyperbolicspaces to learnrichervideorepresentationsthatmoreefectivelydistinguishnormalfromabnormal events.Experimentsshowthatthis method achieves AUC scores of 93.26% and 77.55% on the Shanghai Tech and UCF-Crime datasets,respectively,outperforming existingunsupervised video anomalydetectionmethods.Theseresultsconfirmtheadvantageof hyperbolic spaceincapturingthelatentgeometrichierarchyofvideodataandhighlightitspotential inenhancinganomalydetectioncapabilities.
KeyWords:unsupervised;video anomaly detection;Lorentz hyperbolicspace;Poincaréballhyperbolic space
0 引言
隨著國(guó)家公共安全意識(shí)的不斷增強(qiáng),監(jiān)控?cái)z像頭在街道、十字路口、銀行和購(gòu)物中心等公共場(chǎng)所的使用日益普及,旨在提高整體的公共安全水平。(剩余17085字)