基于大語言模型的多任務(wù)生成式重構(gòu)對話情緒識別

打開文本圖片集
中圖分類號:TP391 文獻(xiàn)標(biāo)志碼:A 文章編號:1001-3695(2025)07-006-1964-08
doi:10.19734/j. issn. 1001-3695.2024.12.0486
Abstract:Emotionrecognition inconversation(ERC)isakey task indialogue systems research.However,existing models oftensuferfromoverfittng tospecificdatasetsanddialoguepatersduetothecomplexityofpipelinedsign,hichlimitstheir generalizationability.Toaddress thisisse,thisstudyproposedamulti-task generativeemotionrecognitioninconversatin(MGERC)model basedonlarge language models.The model introduced two auxiliarytasksbasedon pre-trained large language models;speakeridentifcationandtopic-basedemotionprediction.Thespeakeridentificationtaskaimed toimplicitlymodelthe relationshipsbetweeconversationaloles,lpingthemodelbeterunderstandmotionalxchangesbetween diffrentparticipants.The topic-based emotionprediction task predicted theglobalthemeoftheconversation,capturing thepotentialconnectionbetweentopicsandemotions,thusimproving emotionrecognitionaccuracybyincorporatingcontextualinformation.Aditionaly,M-GERCintroducedaknowledgeretrieval modulethatretrieveddomain-specificknowledgeandintegratedexteral knowledge to further enhance the model’sunderstanding ofcontext.Experimentalresultsshow that M-GERC significantlyoutperforms existing mainstream ERC models,achieving W-F1 improvements of 3.1% , 4.3% and 3.7% on the DailyDialog, MELD and EmoryNLP datasets,respectively.
Key Words:emotion recognition in conversation;large language models;topic;external knowledge
0 引言
“如果想要真正的智能機(jī)器,那么必須讓它們能夠理解情緒,而不僅僅是執(zhí)行特定的任務(wù)。(剩余22100字)