互補(bǔ)盲點(diǎn)策略和U型Transformer的地震數(shù)據(jù)去噪

打開(kāi)文本圖片集
中圖分類號(hào):TP399 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1001-3695(2025)07-018-2056-08
doi: 10.19734/j. issn.1001-3695.2024.12.0516
Abstract:Randomnoisedenoisingcanefectivelyimprovesthesignal-to-noiseratio(SNR)ofseismicdata.Blindspot-driven unsuperviseddenoising methodsdonotrequirelabeleddataandcanautomaticallextractfeatures,buttheyignore noisecorrelations,leading tosuboptimalperformance.Toaddress thisisse,thispaperproposed thecomplementaryblindspotstrategy andU-shapedTransformerseismicdenoising framework(CBUTS).Firstly,thecomplementaryblind-spotstrategyusedtrace maskingandrandommaskingforcomplementarysamplingtoefectivelyweakenthespatialconnectionsof noise.Secondly,visibleblindspotlossfunction integrateddenoisedresultsfromboth non-blindandblindspots,reducing informationlo.Finall, the Transformer-based U-shaped blindspotnetwork(STU-Net)enhancedthecaptureof globalandlocal features,further weakened thenoisecorrelations,andmore accuratelypredictedvalidsignals.Experimentalresultsshow that,compared to classicalandadvancedsupervisedand unsupervised methods,CBUTSachievesbeterperformance indenoising noiseand preserving thecontinuityofseismicevents.Analysisandcomparisonconfirmtheapplicabilityof the method toseismicdata denoising.
Keywords:seismic data denoising;unsupervised;blind spot strategy;Transformer
0引言
由于勘探環(huán)境和測(cè)量設(shè)備等因素的影響,地震數(shù)據(jù)在采集過(guò)程中不可避免地會(huì)引入隨機(jī)噪聲。(剩余15864字)