獎勵回溯DQN驅動的多QoS工業(yè)網(wǎng)絡時隙調度方法

打開文本圖片集
中圖分類號:TP393 文獻標志碼:A 文章編號:1001-3695(2025)07-029-2141-06
doi: 10.19734/j. issn.1001-3695.2024.12.0491
Abstract:Existing researchonmulti-QoSscheduling problems,due toitsreliancesolelyonimmediatereward feedback mechanisms,faces isues ofpoor scalabilityand resource wastagewhen handlingdelay-sensitivedataand mediadata withcontinuous transmision requirements inresource-constrained scenarios.To addressthis problem,this paper proposed aRB-DQN algorithm.Thisalgorithmadjustedthecurrntstate’spolicyevaluationbybacktrackingfutureinteractions,effectivelyidentifyingandresolving packetlosscausedbysuboptimalschedulingstrategies.Additionaly,itdesignedaLTTmetric,whichcomprehensivelyconsideredtheservicerequirements ofbothdelay-sensitivedataandmedia-typedata,alowing forweightadjustmentstoemphasizediferentpriorities.Extensivesimulationresultsdemonstratethattheproposedalgorithmsignificantlyreducesthe delayand jiterofdelay-sensitivedata while ensuringthe smothnessandstabilityof media-type data,outperforming other scheduling strategies.
Keywords:time slot scheduling;deep reinforcement learning;multi-QoS;reward backtracking
0 引言
隨著工業(yè)互聯(lián)網(wǎng)的快速發(fā)展,制造業(yè)正經歷深刻的變革。(剩余15719字)