基于高階鄰域信息交互的自監(jiān)督異質(zhì)圖嵌入算法

打開文本圖片集
關(guān)鍵詞:異質(zhì)圖;自監(jiān)督算法;節(jié)點嵌入;高階鄰域
中圖分類號:TP391 文獻標志碼:A 文章編號:1001-3695(2025)07-012-2011-07
doi:10.19734/j. issn.1001-3695.2024.11.0493
Abstract:Toaddress theissue thatcurrentself-supervised neuralnetwork algorithms donotconsider theimpactofhighorder node information whenobtaining neighborhood node weights,thispaper proposedaself-supervised heterogeneous graph embeddingalgorithmbasedonhigh-orderneighborhood informationinteraction(SSHGEA-HNI).Itenhancedlocaloptimization capabilitiesandmodelperformancebyaddingafeedforwardfullconnectedlayerintheattentionmechanism tocapturehighorderneighborhoodnodefeatures.Thealgorithmconsistedofalabel generationmoduleandanembeddinglearning module.The label generation module produced pseudo-labels for nodesthrough label propagation,which servedassupervisorysignals to guidetheembedding generationmodule to produceembeddings.Theembedding learning module generatedembeddings andattentioncoeffcientsthroughtheatentionmechanismbasedonhighorderneighborhoodinformationinteraction,withtheaentioncoeffcientsusedtoguidethelabelgeneration module toproduce pseudo-labels.Ineach iteration,thetwo modules shared node atentioncoeficients,promoting mutual utilizationandenhancementbetweenthetwo modules.Experimentswereconductedonfourreal heterogeneous graphdatasets,withimprovementsobserved intheclusteringand clasification tasksof most datasets.Theexperimental results demonstrate thatthe modelcan efectivelyutilize high-order node information.
Key words:heterogeneous graph;self-supervised algorithm;node embedding;high-order neighborhood
0 引言
近年來,由于圖嵌入[1,2]在分析圖結(jié)構(gòu)數(shù)據(jù)過程中十分重要,導(dǎo)致圖嵌人技術(shù)發(fā)展十分迅速。(剩余18124字)