基于超圖和分層頻譜濾波器的序列推薦模型

打開文本圖片集
中圖分類號:TP391.3 文獻標志碼:A 文章編號:1001-3695(2025)07-013-2018-07
doi: 10.19734/j. issn.1001-3695.2024. 12.0488
Abstract:Toaddress thedata sparsity problem prevalent insequence recommendationandthe noise isue caused byunexpected interactions between users and items,this paper proposed asequence recommendation model basedon hypergraph and hierarchical spectralflters(HYFTRec):HYFTRec introducedthe hypergraph structure intosequence recommendation, captured thecomplex higher-orderrelationshipsbetween usersanditems through thehypergraphembedding module,and atthe sametimeutilizedthehierarchicalspectralfilterforeffctivedenoisinginthefrequencydomainforefectivedenoising,which improved theaccuracyandrobustnessofrecommendation.Inaddition,themodel incorporatedacomparative learning framework tooptimize the characterizationabilityof userbehaviorsequences.Through multipleexperimentalvalidationsonthree public datasets,HYFTRecdemonstratesadvantages intermsof keymetricshitrate(HR)and normalizeddiscountcumulative gain(NDCG),which significantlyoutperformsexisting sequencerecommendation models.Compared with the benchmark modelFMLP,HYFTRec improves 10.7% , 10.8% ,and 7.6% in HR@ 10 metrics and 12.5% , 13.7% ,and 7.3% in NDCG@10 metrics,respectively.These results verify the validity and superiority of the proposed model.
Key words:hypergraph;hierarchical spectral filter;contrast learning;sequence recommendation
0 引言
近年來,隨著推薦系統(tǒng)的廣泛應用,序列推薦逐漸成為研究的熱點領域[1\~4]。(剩余17639字)