特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

基于完整超圖神經(jīng)網(wǎng)絡(luò)的捆綁推薦模型

  • 打印
  • 收藏
收藏成功


打開文本圖片集

中圖分類號(hào):TP391 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1001-3695(2025)07-011-2003-08

doi:10.19734/j.issn.1001-3695.2024.11.0494

Abstract:Bundling recommendation enhances user experienceand boosts merchant sales performance byofering predefined setsof productcombinations.It also playsa significantrole in various serviceecosystems suchas video-on-demandandmusic playlistgeneration.Existingbundlingrecommendationmethodsoftenrelyonsharedmodel parametersormulti-task learning schemes,neglectingthedeep-levelconnectionsamongusers,items,andbundles,hichleadstoinformationlossandipacts the performanceofrecommendationsystems.Toadesstheseissues,tispaper proposedacompletehypergraphneuralnetwork (CHNN).Firstly,theframeworkconstructedacompletehypergraphtoexpressthetemaryelationshipsamong users,items,nd bundles.Theseternaryrelationshipsnotonlyincludedtheinterconnectionsamongusers,items,andbundled,butalsoecompasedthe interalconnectionswithinusersandbundles,effectivelydescribingtherelationshipbetweenproductbundlesand userpreferences.Scondly,temodelconsistsofaninitializationlayer,atripleconvolutionlayer,andapredictionlayer.The initializationlayergeneratedembeddingvectorsforeachuser,item,andbundle.Thetripleconvolutionlayerextractediforationfromthecompletehypergraphandleveragedtheuser-bundle graphand item-bundlegraph toenhancetherepresentations of users,items,andbundles.The predictionlayer providedrecommendationsbasedonthefinalembedding vectors.Through multi-layerrichconvolutionoperations,themodel fullyexploredtheassciationscontained inthecomplete hypergraphto achieve moreaccuraterecommendations.Experimentson tworeal-worlddatasets,NetEaseandYouShu,demonstratethat CHNN achieves an average improvement of 2.4% in recall and 2.75% in NDCG,outperforming existing baseline models and showcasing its effectiveness in the field of bundling recommendation.

Key words:graph neural network;bundle recommendation;hyper graph;graph convolutional network

0 引言

隨著營銷策略的快速發(fā)展,商家已經(jīng)考慮向用戶推薦一組商品[1-5]。(剩余19197字)

目錄
monitor