基于強(qiáng)化學(xué)習(xí)協(xié)同進(jìn)化算法求解柔性作業(yè)車間節(jié)能調(diào)度問(wèn)題

打開文本圖片集
關(guān)鍵詞:柔性作業(yè)車間調(diào)度;Q-learning;改進(jìn)NSGA-II;多目標(biāo)優(yōu)化 中圖分類號(hào):TH165 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1001-3695(2025)07-016-2039-09 doi:10.19734/j. issn.1001-3695.2024.11.0479
Abstract:Fortheflexiblejob shopenergy eficientscheduling problem(EEFJSP),thispaperconstructedaFJSPmodel with theoptimizationobjectivesof minimizingthemaximumcompletiontimeand minimizingthetotal energyconsumption.Firstly, it proposedanadaptivealgorithmbasedonreinforcementlearningco-evolutionaryalgorithm(QNSGA-II)to characteriethe problemmodel.Secondly,it introduced theconceptsof state spaceandaction spaces,and designedareward-punishment functionbasedoheoverallaveragefinesandpopulationdiversitytoensuretheefectivenessofthealgoritinteiterative processInorder toimprovetheabilityof theglobal searchandlocalsearch,itproposedanimproved tabusearchalgorithmto updatethepopulationaftercrosoverandmutation.Inordertoimprovetheabilityof globalsearchandlocal search,itproposedanimprovedtaboosearchalgorithmtoupdate thepopulationaftercrosoverandmutation.Finall,itanalyzedtheeffectivenessoftheimproved tabusearch strategyandthe Q-learning parameteradaptationstrategy toverifythealgorithm’seffectiveness andsuperiority,anditcomparedtheproposedQNSGA-Iwithother multi-objectiveoptimizationalgorithmsto verify the superiority of the algorithms in solving the EEFJSP.
Key Words:flexible job shop scheduling;Q-learning;improved NSGA-I ;multi-objective optimization
0 引言
近幾十年來(lái),隨著環(huán)境的不斷惡化,政府呼呼節(jié)能減排,綠色制造已成為各國(guó)增強(qiáng)制造業(yè)核心競(jìng)爭(zhēng)力的戰(zhàn)略重點(diǎn)。(剩余20115字)