PMoE:在P-tuning中引入混合專家的參數(shù)高效微調(diào)框架

打開文本圖片集
關(guān)鍵詞:大語言模型;參數(shù)高效微調(diào);P-tuning;混合專家;多任務(wù)學(xué)習(xí)中圖分類號(hào):TP18 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1001-3695(2025)07-005-1956-08doi:10.19734/j.issn.1001-3695.2024.11.0484
Abstract:Large language model (LLM)has significantly improved performanceinreasoning and generation tasks.However, existing open-sourceLLMstillackssuffcientdomain-specificknowledgeandrequiresfine-tunngforspecializedtasks.Traditionalfine-tuningmethodsstruggletobalancelowcostandhigheficiencyinmuli-taskleaing.Toaddressthisisue,hispaperproposedaparameter-effcientfine-tuning framework namedPMoE.BasedontheP-tuning method,this framework introducedamixture-of-expertsmechanism toenhancemulti-task proessingwhilemaintaininglow-costtuning.Ineach Transformer modulelayer,PMoE constructed trainable expert modules toreplace the prompt modules in P-tuning and utilizedarouting mechanism todynamicallyalocatetasksbasedoninput task features.Aditionally,itdesignedtheexpert modulesinMoEto bedetachable,enabling modelreuseacrossdferent task scenariosandfurtherreducingcomputationalcosts.Experimentalresults demonstrate that PMoE achieves a 6.24% performance improvement over P-tuning on a Chinese medical dataset and exhibitssuperiorcapabilities inmulti-taskprocessngandtransferlearning,verifying itseficiencyandbroadapplicability.
Key words:large language model;parameter-effcient fine-tuning;P-tuning;mixture of experts;multi-task learning
0 引言
隨著大語言模型(largelanguagemodel,LLM)的不斷迭代更新,這些模型在推理和文本生成方面的能力得到了顯著增強(qiáng)。(剩余21086字)