基于雙向數(shù)據(jù)流分析與圖抽象嵌入的漏洞檢測方法

打開文本圖片集
關(guān)鍵詞:深度學(xué)習(xí);漏洞檢測;數(shù)據(jù)流分析;圖神經(jīng)網(wǎng)絡(luò);網(wǎng)絡(luò)安全
中圖分類號:TP319 文獻(xiàn)標(biāo)志碼:A 文章編號:1001-3695(2025)07-034-2176-08
doi:10.19734/j. issn.1001-3695.2024.10.0436
Abstract:Ascyberatacksandcybercrimesbecome increasinglysevere,theaccuracyandcomprehensivenessofsoftware vulnerabilitydetection faces significant challenges.To addressissuessuch as the dificultyofcapturing complex semanticsof interproceduralVulnerabilies,theincompleteanalysisofdataflowinformation,andthechallengesinextractingvulnerability paternfeatures,thispaperintroducedabidirectionaldataflowanalysis vulnerabilitydetectionmethodbasedonLLVMIRand Bi-GGNN—BiG-BiD(Bi-GGNNbasedonbidirectionalDFA).Firstly,it generatedLLVMIRbycompiling sourcecode with LLVM,andconstructedanICFG(interproceduralcontrolflowgaph)toincorporateinterproceduralvulnerabilitysemantics.In addition,this paper proposeda novelICFG abstract embedding method,called DLAE (DFA line-level abstract embedding), combiningabstractdataflowwithLLVMIRline-levelvulnerabilityfeatureembeddngtoaccuratelyrepresenpotentialvulnerabilitypatersinhecode.Finally,ittrainedBi-GGNNtodynamicallsimulatereachingdefinitionanalysisandlivevariable analysis withintheICFG,enableddynamic propagationandupdatingof abstractdataflows.ExperimentalresultsontheBigVul and Reveal public datasets show that BiG-BiD achieves a recall rate of 73.7% ,outperforming existing static analysis tools and deep learning-based vulnerability detection models by 5%~38% . Additionally,this method successfully detects 23 CVE vulnerabilitiesacrossfouropen-source projects,,thathaveneverseenbefore,,1Oof the vulnerabilitiesremainunpatched,demonstrating the effctivenessand generalization of the proposed method on vulnerability detection tasks.
KeyWords:deep learning;vulnerability detection;data flow analysis;GNN;cyber security
0 引言
近年來,高級持續(xù)性威脅(APT)攻擊頻發(fā)",網(wǎng)絡(luò)空間安全已然成為國家安全不可或缺的核心部分,更是推動新時代經(jīng)濟高質(zhì)量發(fā)展的戰(zhàn)略基石。(剩余19121字)