多尺度降噪自編碼器的遮擋行人重識別研究與應用

打開文本圖片集
中圖分類號:TP391 文獻標志碼:A 文章編號:1001-3695(2025)07-040-2220-07
doi:10.19734/j.issn.1001-3695.2024.09.0372
Abstract:Toaddress theisueofocclusioninpersonre-identification(ReID)andalleviate theimpactof insufficientocclusion datasets,this research focusedonoccudedReIand proposedamultiscaledenoising autoencoder-based method.The method usedknowledgedistllationlearninginastudent-teachermodelforjointtraining,enablingthetransferofknowledgefromthe teachermodel tothestudentmodel.Usingartificiallyccludedimages totraintheautoencoder,compressedtheinputdatainto alatentspacefeaturerepresentation,decoded toreconstructdatathatcloselyresemblestheoriginalinput,achievingdenoising reconstruction.Basedonthetrainedautoencoder,further trainingwithealocludedimagesandincorporatinganatentionmo duletodiferentiatebetweenthefeaturerepresentationsofoludedimagesandholisticimages,enhancedthemodel’srobustnesand recognition performance foroccluded images.Experimentsdemonstrate thattheproposed methodachievessuperior performance onthe Occude-Duke,Occluded-ReID,and Partial-ReIDdatasets compared tocurrentlyadvancedoccluded pedestrianre-identification approaches.
Key words:person re-identification;occlusion;denoising autoencoder;knowledge distillation
0 引言
行人重識別(ReID)是計算機視覺領(lǐng)域的一個重要研究方向,旨在解決如何在不同監(jiān)控攝像頭中識別同一行人的問題。(剩余21145字)