帶頻繁區(qū)域的空間并置模式挖掘方法

打開文本圖片集
關鍵詞:空間并置模式挖掘;頻繁區(qū)域;候選區(qū)域;拓展區(qū)域;區(qū)域粗參與度中圖分類號:TP391 文獻標志碼:A 文章編號:1001-3695(2025)07-022-2086-10doi:10.19734/j. issn.1001-3695. 2024.10.0456
Abstract:Thisstudy focusedonspatialco-location patern mining,aiming toexplore theco-locationrelationships between spatialfeatures.Whiletraditionalmethodscanidentifyfrequentlyco-locationpatterns,theycannotdeterminethespecificspatialregions wherethese pattersoccur.Toaddress thisissue,thisstudyproposedanovel spatialco-locationpattrmining algorithmwithfrequentregions.Thealgorithmwasdividedintotwostages:thefirststageusedanagglomerativehierarchical clustering method topartition thespacebasedonthedatacharacteristics,andthenconfirmedthe proximityrelationships between instances within each cluster.Thesecond stage introduced theconcepts ofco-location patern presence regionsand regionalparticipationdegree,ndbasedonthese,itincrementallidentifiedthefrequentregionsofco-locationpaterns.To acceleratetheidentificationoffrequent regionsandthepattmmining process,thealgorithmquicklyconstructedcandidate regionsforhigher-orderpatternsbyexpanding theregionsofsub-paternsandusedrough participation degres tofilterout candidateregionsthatwereunlikelytobefrequent inadvance.Finally,extensive experiments onrealandsyntheticdatasets havedemonstratedthepeformanceoftheproposedalgorithmintermsof thenumberof spatialco-locationpaternswith frequentregions generated,theaccuracyoffrequentregions,andtheprecisionoffrequentregions.Onreal datasets,theaccuracyof thealgorithmrangesbetweenO.83andO.95.Furthermore,inexperiments evaluating thescalabilityofthealgorithm, whenthenumberoffeaturesinthedataset ismoderate,theperformanceof thePROC-Colalgorithmisapproximatelytwiceas fast as the current state-of-the-art multi-level algorithm.
Key words:spatialco-location patern mining;frequentregions;candidateregions;expandedregions;rough regional participation index
0 引言
空間并置模式挖掘1自2001年提出以來,取得了顯著進展。(剩余25237字)