多智能體編隊中人工勢場法的改進(jìn)研究

打開文本圖片集
DOI:10.16652/j.issn.1004-373x.2025.17.027 引用格式:,.多智能體編隊中人工勢場法的改進(jìn)研究[J].現(xiàn)代電子技術(shù),2025,48(17):181-186.
關(guān)鍵詞:人工勢場法;多智能體編隊;局部最小值;衰減權(quán)重;斥力計算;權(quán)重分配中圖分類號:TN911.1-34;TP391.9 文獻(xiàn)標(biāo)識碼:A 文章編號:1004-373X(2025)17-0181-06
Application of improved artificial potential field method in multi-agent formation control
HEXing1,BAI Yanhong1,2
(1.SchoolofElectronicInformationEngineering,TaiuanUiversityofSienceandTechnology,TauanO3O24,Cina; !CollegeoftellgentacuinustryaniUesityflctroicicdholoyinfea
Abstract:Sincethetraditionalartificialpotentialfieldmethodispronetofalingintolocalminima,animprovedartificial potentialfieldalgorithmwhichintroducesrepulsionattenuationweightisproposedaccording totheideaofdestroyingthe equilibriumstateofagentsatnon-targets.Thisalgorithmasignsweightstoobstaclesencounteredwithintheagent'sdetection rangeandapliestheseweightstothecalculationofrepulsiveforces exertedbytheobstacles.Theweightsdecayastheagent moves,ensuring thatthenetforceactingontheagentdoesnotbalanceoutbeforereaching thetarget,therebyalowing the agenttoescapelocalminia.Theresultsofthesimulationexperimentsdemonstratethat,incomparisonwiththetraditioalartificialpotentialfeldmethodandother methodsavoidinglocal minimasuchastherandomdisturbancemethodandtheedge-followingmethod,theproposedalgorithmavoidsthelocalminimaefectivelyandshowssignificantimprovementsinconvergence speed,stability and energy consumption.
Keywords:arificialpotentialfieldmethod;multi-agentformation;local minima;atenuationweight;repulsiveforcecalculation;weight allocation
0 引言
多智能體編隊在軍事、救援救災(zāi)、農(nóng)業(yè)生產(chǎn)、倉儲物流、交通管理等領(lǐng)域得到了廣泛應(yīng)用。(剩余6919字)