基于物理解耦與自適應(yīng)特征提取的無監(jiān)督圖像去霧

打開文本圖片集
引用格式:,.基于物理解耦與自適應(yīng)特征提取的無監(jiān)督圖像去霧[J].現(xiàn)代電子技術(shù),2025,48(17):77-84.
中圖分類號:TN911.73-34;TP391.41 文獻(xiàn)標(biāo)識碼:A 文章編號:1004-373X(2025)17-0077-08
Unsupervised image dehazing based on physical decoupling and adaptivefeatureextraction
YAN Zaishuang1,2,HE Peng1,2 (1.HubeiKeyLaboratoryofIntellgentVisionBasedMonitoringforHydroelectricEngineering,Yichang443oChina; 2.CollegeofComputerandInformationTechnology,ChinaThreeGorgesUniversityYichang443Oo2,China)
Abstract:Unsupervisedlearning isadoptedtoimprovegeneralization inrealscenarios inmanyimage dehazingalgorithms. However,theexistingunsuperviseddehazingmethodsmostlyrelyontheCycleGAN(cycle-consistent generativeadversarial network)framework andrealizedehazing bysimplecyclesofdehazing andre-hazing,soitlacks efectiveconstraintsonthe generatedimagesandresultsinsuboptimalperformance.Moreover,thesemethodsfailtosuficientlyconsiderthephysical propertiesof haze inthe featureextraction,which causesasevere lossof texturedetails.Therefore,anunsupervised image dehazingnetworkbasedonphysicaldecouplingandadaptivefeatureextractionisproposed,andthenetworkmodelisnamed UPDA-Net.Specificalyaphysicaldecoupling network(PDN)isdesigned toseparateandestimatetheatmosphericlightand transmissionmapinhazyimagesbyestablishing physicalconstraintsbasedontheatmosphericscattering model.Thisdesign allowsformoreaccuraterestorationofimageilumination,andenhancesthephysicalconsistencyandclarityofthedehazing proces.Furthermore,anadaptive featureextraction module (AFEM)isdeveloped tointegrate thephysicalcharacteristicsof atmosphericlightand transmissionmaps.Byapplying theatmosphericscateringmodelinthefeaturespace,thismodule approximatesrelevantcharacteristicsandfuses thepotential physicalfeaturesofclearimages,soastoenhance themodel's featurerepresentationcapabilityandimprovethedetailandtexturequalityoftherestoredimages.Experimentalresults demonstratethattheproposedmethodoutperformssixmainstreamdehazingalgorithmsintermsofobjectiveevaluationandvisual quality on several public real image dehazing datasets.
Keywords:image dehazing;atmosphericscatering model;physical decoupling;parameter estimation;adaptive feature extraction;unsupervised learning;CycleGAN;imagerestoration
0 引言
圖像去霧是計算機視覺領(lǐng)域的一個重要研究課題,近年來受到廣泛關(guān)注。(剩余11993字)