一種基于圖學(xué)習(xí)的試飛試驗點關(guān)聯(lián)性挖掘算法

打開文本圖片集
中圖分類號:TN99-34 文獻標識碼:A 文章編號:1004-373X(2025)17-0160-07
引用格式:,.一種基于圖學(xué)習(xí)的試飛試驗點關(guān)聯(lián)性挖掘算法[J].現(xiàn)代電子技術(shù),2025,48(17):160-166.
Agraph-basedflighttestpointsrelationshippredictionalgorithm
LIU Peng,DENG Xiaozheng (ChineseFlightTestEstablishment,Xi'an71oO89,China)
Abstract:Thearrangementofflighttestpointsisfundamentalinflighttestig.Howtosientificallandefectivelyarange thesetestpointsandformarationalflighttestplanplaysacrucialroleinensuringsafetyficiencyandcost-ectivenes throughouttheentireflighttestlifecycle.Amongthem,theanalysisofthecorrelationbetweentestpoints,especiallthe determinationoftheprecedencerelationship,representstheexecutionorderofthetestpointsandisakeyfactorinthe arrangement oftheflighttest plan.Therefore,aknowledgemining algorithmbasedongraph convolutional neural networksis proposed tomeetthedemandforpredictingtheprecedencerelationshipof testpoints.Theentirealgorithmmodelisdevelopedin a knowledge graphbasedonthestructuralrepresentatioof test points.Subsequently,modulessuchasgraph knowledgeelement extraction,testpoints‘deepfeatureminingbasedongraphconvolution,andtestpointpairs'logicalrelationshipegreionare designedto explorethecorelationrelationshipbetweentestpointpairsandachieveaccurate precedencerelationshipprediction. Intheflighttest,thetestpointdatasetwastested,andmultipleclassicalmodelswerecompared.Theproposedalgorithm demonstratessignificantadvantagesintermsofaccracyandstability.Theeffectivenessof theproposedalgorithmisverified.
Keywords:flight test;test pointexecutionorder;graph learning;graphconvolutional network;autoencoder;knowledge graph
0 引言
近年來,隨著我國航空裝備的飛速發(fā)展,對飛行試驗的安全和效率提出了更高的要求。(剩余10086字)