多低軌衛(wèi)星協(xié)作的邊緣計(jì)算卸載與資源分配策略
中圖分類(lèi)號(hào):TN929.5-34 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1004-373X(2025)17-0007-09
引用格式:,等.多低軌衛(wèi)星協(xié)作的邊緣計(jì)算卸載與資源分配策略[J].現(xiàn)代電子技術(shù),2025,48(17):7-15.
Edge computing offloading and resource allocation strategy for multi-LEO satellitecollaboration
YANGLiming,ZHOU Yuqian,WANGWenhao,ZHAOHongjun (Schoolfoaidoatigoigsitosdeletiso
Abstract:Low earth orbit (LEO)satelites with widecoveragecan beequipped with mobile edge computing (MEC)server with computing power toprovidemoreeficientcommunicationservices for ground terminalequipment (GTE).Inthispaper,a strategyis proposedonthebasisofconsideringthefactorssuchas mobilityandresource limitationofLEOsatelites,as wellas thecontinuousactionspaceofthecomputingoffoadingproblem.ThecomputingoffoadingproblemistransformedintoaMarkov decisionprocess(MDP)forthejointofloading of multipleLEOsatelltes.Thesystem bandwidth resourcesandcomputing resourcesarealocated.Andten,acomputationalofloadingandresourceallcationstrategybasedondeepdeterministicpolicy gradient (DDPG)isproposed.Inthestrategy,theoveralllatencyofthesystemisoptimizedwhenserving multipleGTEs.The simulationresultsshowthattheproposedstrategycancompletethetaskoffoadingandresourcealocationefectively,andeduce thesystemdelaysignificantly.Theaveragedelayoftheproposedstrategyunderthetotaltaskvolumeof1~1OMBisreducedby about 40.9% , 35.59% and 30.7% ,respectively,in comparison with the three strategies of no inter-satellite link,using deep Qnetwork and full offloading.
Keywords:LEOsatelite;MEC;task offloading;resource allocation;offloading strategy;deepreinforcementlearning
0 引言
隨著物聯(lián)網(wǎng)新興技術(shù)的發(fā)展,在各種智能設(shè)備上產(chǎn)生了許多延遲敏感、計(jì)算密集的應(yīng)用,例如VR(虛擬現(xiàn)實(shí))、AR(增強(qiáng)現(xiàn)實(shí))、各式各樣的游戲,這些應(yīng)用要求很強(qiáng)的計(jì)算能力,如果僅依靠地面終端設(shè)備(GroundTerminalEquipment,GTE)本身的計(jì)算能力很難去滿(mǎn)足用戶(hù)低時(shí)延、高穩(wěn)定性的需求4。(剩余21910字)
-
-
- 現(xiàn)代電子技術(shù)
- 2025年17期
- 基于TCN模型的航空器四維航跡...
- 多低軌衛(wèi)星協(xié)作的邊緣計(jì)算卸載與...
- SM系統(tǒng)中改進(jìn)的低復(fù)雜度檢測(cè)算...
- 基于多域特征融合的雷達(dá)輻射源個(gè)...
- 基于FPGA的可調(diào)節(jié)OFDM發(fā)...
- 基于改進(jìn)YOLOv8n的車(chē)輛及...
- 結(jié)合多尺度與多層級(jí)聚合的卷軸畫(huà)...
- 基于目標(biāo)檢測(cè)和光流法的動(dòng)態(tài)SL...
- 基于多特征和層級(jí)網(wǎng)絡(luò)的LPI雷...
- 基于改進(jìn)條件擴(kuò)散模型的殘簡(jiǎn)文字...
- 基于ICEEMDAN-SVD與...
- 基于物理解耦與自適應(yīng)特征提取的...
- 改進(jìn)YOLOv8的霧天目標(biāo)檢測(cè)...
- 基于多傳感器融合的三維高斯?jié)姙R...
- 基于工業(yè)控制系統(tǒng)的跨域攻擊建模...
- 全局上下文引導(dǎo)的雙代價(jià)聚合立體...
- 基于改進(jìn)蜉蝣算法的無(wú)線(xiàn)網(wǎng)絡(luò)頻譜...
- 基于雙池DDPG的邊緣計(jì)算卸載...
- 融合多尺度特征的輸電線(xiàn)路絕緣子...
- 融合EKF的無(wú)人船航向自抗擾控...
- 基于幾何關(guān)系的空氣懸架執(zhí)行器故...
- 基于改進(jìn)YOLOv8s的交通標(biāo)...
- 基于ESP32的多節(jié)點(diǎn)分布式溫...
- 一種基于圖學(xué)習(xí)的試飛試驗(yàn)點(diǎn)關(guān)聯(lián)...
- 改進(jìn)YOLOv8的無(wú)人機(jī)搜救小...
- 基于改進(jìn)YOLOv8n的PCB...
- 多智能體編隊(duì)中人工勢(shì)場(chǎng)法的改進(jìn)...