基于多傳感器融合的三維高斯?jié)姙R技術(shù)
中圖分類號:TN911.73-34;TP242 文獻(xiàn)標(biāo)識碼:A 文章編號:1004-373X(2025)17-0093-05
引用格式:,.基于多傳感器融合的三維高斯?jié)姙R技術(shù)[J].現(xiàn)代電子技術(shù),2025,48(17):93-97.
3DGaussian splatting technology based on multi-sensor fusion
LI Yongchang, LI Wei (Schoolof MechanicalandElectrical Engineering,China JiliangUniversity,Hangzhou31oo18,China)
Abstract:Tomeet thedemandof buildinghigh-quality3Dmodelsforintellgentmobilerobots,a3DGausiansplatting (3DGS)optimizationalgorithmbasedonmulti-sensorfusionisproposedbasedon3DGaussiansplattingreconstruction technology.ThedatasetcontainingLiDAR,cameraandIMUinformationisrecordedintherealscene.The3DGausian distributionisinitializedbytheoptimizedodometerposeandthecamerafeaturepointscalibratedbythelaserpointcloud.On thebasisoftakingaccountofthegeometricinformationoftepointcloud,thelossfunctionisimprovedfortheparameterodel optimization.The3DGSoptimizationalgorithmbasedonmulti-sensorfusionandtheoriginal methodweresubjectedto reconstructionexperimentsunderdiferentdatasets.Thereconstructedresultswerecomparedintworealscenarios.The experimentalresultsshowthatthepeak signal-to-noiseratio(SNR)ofthe3DGausiansplattingoptimizationalgorihmbasedon multi-sensor fusion isimproved by 3.5% and 3% in weak texture environment and general texture environment respectively,in comparisonwiththe3DGSreconstructionmethod.Anditsstructural similarity(SSIM)andlearnedperceptualimagepatch similarity(LPIPS)alsoperformwell.Itcanbeseenthatthequalityof thereconstructedmodelhasbeenimprovedand the effectiveness of the proposed algorithm has been validated.
Keywords:inteligentrobot;point cloud;3Dreconstruction;reconstructionaccuracy;3DGS;simultaneous localizationand mapping
0 引言
在現(xiàn)代機器人和自動駕駛技術(shù)中,SLAM(Simulta-neousLocalizationandMapping,即時定位與地圖構(gòu)建)系統(tǒng)扮演著至關(guān)重要的角色。(剩余11916字)
-
-
- 現(xiàn)代電子技術(shù)
- 2025年17期
- 基于TCN模型的航空器四維航跡...
- 多低軌衛(wèi)星協(xié)作的邊緣計算卸載與...
- SM系統(tǒng)中改進(jìn)的低復(fù)雜度檢測算...
- 基于多域特征融合的雷達(dá)輻射源個...
- 基于FPGA的可調(diào)節(jié)OFDM發(fā)...
- 基于改進(jìn)YOLOv8n的車輛及...
- 結(jié)合多尺度與多層級聚合的卷軸畫...
- 基于目標(biāo)檢測和光流法的動態(tài)SL...
- 基于多特征和層級網(wǎng)絡(luò)的LPI雷...
- 基于改進(jìn)條件擴散模型的殘簡文字...
- 基于ICEEMDAN-SVD與...
- 基于物理解耦與自適應(yīng)特征提取的...
- 改進(jìn)YOLOv8的霧天目標(biāo)檢測...
- 基于多傳感器融合的三維高斯?jié)姙R...
- 基于工業(yè)控制系統(tǒng)的跨域攻擊建模...
- 全局上下文引導(dǎo)的雙代價聚合立體...
- 基于改進(jìn)蜉蝣算法的無線網(wǎng)絡(luò)頻譜...
- 基于雙池DDPG的邊緣計算卸載...
- 融合多尺度特征的輸電線路絕緣子...
- 融合EKF的無人船航向自抗擾控...
- 基于幾何關(guān)系的空氣懸架執(zhí)行器故...
- 基于改進(jìn)YOLOv8s的交通標(biāo)...
- 基于ESP32的多節(jié)點分布式溫...
- 一種基于圖學(xué)習(xí)的試飛試驗點關(guān)聯(lián)...
- 改進(jìn)YOLOv8的無人機搜救小...
- 基于改進(jìn)YOLOv8n的PCB...
- 多智能體編隊中人工勢場法的改進(jìn)...