2</sub>) 來(lái)提高網(wǎng)絡(luò)對(duì)小目標(biāo)的檢測(cè)能力;然后,將在線卷積重參數(shù)化(OREPA)融入到C2f模塊中,從而提高在高密度環(huán)境下對(duì)車(chē)輛及行人檢測(cè)的精確率和效率;最后,采用WIoU-Δ<sub>v2</sub> 作為替代損失函數(shù),以實(shí)現(xiàn)更高的定位精度。在KITTI車(chē)輛檢測(cè)數(shù)據(jù)集上的實(shí)驗(yàn)結(jié)果表明,與原始算法相比,改進(jìn)算法的檢測(cè)精確率提升了 3.6% ,平均精度均值提升了 4.2% ,證明了其在車(chē)輛及行人檢測(cè)方面具有高效性和優(yōu)越性。-龍?jiān)雌诳W(wǎng)" />

特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

基于改進(jìn)YOLOv8n的車(chē)輛及行人檢測(cè)

  • 打印
  • 收藏
收藏成功


打開(kāi)文本圖片集

DOI:10.16652/j.issn.1004-373x.2025.17.006引用格式:,,.基于改進(jìn)YOLOv8n的車(chē)輛及行人檢測(cè)[J].現(xiàn)代電子技術(shù),2025,48(17):35-40.

關(guān)鍵詞:YOLOV8n;車(chē)輛行人檢測(cè);小目標(biāo)檢測(cè);損失函數(shù);SPPF;C2f中圖分類(lèi)號(hào):TN911.73-34;TP391.41 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1004-373X(2025)17-0035-06

Vehicleand pedestrian detectionbased on improved YOLOv8nalgorithm

ZHOU Jianxin,HAO Yingjie,HOU Zichuan (CollegeofElectricalEngineering,NorthChinaUniversityofScienceandTechnologyTangshanO63210,China)

Abstract:Inview of theobject oclusion,overlap,and small object missing in roadscene detection,avehicleand pedestrianobjectdetectionmodelbasedontheimprovedYOLOv8nalgorithmhasbeenproposed.Firstly,anew pyramidpooling layerstructurecaled SPPF-CREPisdesigned toreplace theoriginal network'spyramidpoling layerstructure SPF,nhancing themodel'seficiencyand performance during trainingand inference.Secondly,asmall object detection head (P2) is added to improvethenetwork'sdetectioncapabilityforsmallobjects.Then,theonlineconvolutionalre-parameterization(OREPA)is integratedintotheC2f moduletoenhancetheauracyrateandeficiencyofvehicleandpedestriandetectioninhigh-density environments.Finally,the WIoU- v2 isadopted asan alternative loss function to achieve higher localization accuracy. ExperimentalresultsontheKITTIvehicledetectiondatasetdemonstratesthat,incomparisonwiththeoriginalalgorithm,the accuracyrateof thedetectionoftheimprovedalgorithmisincreasedby3.6%,andthemeanaverageprecision(mAP)is enhanced by 4.2% .This experiment has proven its eficiency and superiority in the detection of vehicles and pedestrians.

Keywords:YOLOV8n;vehicleand pedestrian detection;small object detection;loss function;SPPF; C2f

0 引言

在道路目標(biāo)檢測(cè)任務(wù)中,傳統(tǒng)的目標(biāo)檢測(cè)特征泛化能力弱,對(duì)復(fù)雜場(chǎng)景的性能表現(xiàn)較差1,并且存在準(zhǔn)確率低和檢測(cè)速度緩慢等問(wèn)題。(剩余8220字)

目錄
monitor