基于改進(jìn)YOLOv8n的車(chē)輛及行人檢測(cè)

打開(kāi)文本圖片集
DOI:10.16652/j.issn.1004-373x.2025.17.006引用格式:,,.基于改進(jìn)YOLOv8n的車(chē)輛及行人檢測(cè)[J].現(xiàn)代電子技術(shù),2025,48(17):35-40.
關(guān)鍵詞:YOLOV8n;車(chē)輛行人檢測(cè);小目標(biāo)檢測(cè);損失函數(shù);SPPF;C2f中圖分類(lèi)號(hào):TN911.73-34;TP391.41 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1004-373X(2025)17-0035-06
Vehicleand pedestrian detectionbased on improved YOLOv8nalgorithm
ZHOU Jianxin,HAO Yingjie,HOU Zichuan (CollegeofElectricalEngineering,NorthChinaUniversityofScienceandTechnologyTangshanO63210,China)
Abstract:Inview of theobject oclusion,overlap,and small object missing in roadscene detection,avehicleand pedestrianobjectdetectionmodelbasedontheimprovedYOLOv8nalgorithmhasbeenproposed.Firstly,anew pyramidpooling layerstructurecaled SPPF-CREPisdesigned toreplace theoriginal network'spyramidpoling layerstructure SPF,nhancing themodel'seficiencyand performance during trainingand inference.Secondly,asmall object detection head (P2) is added to improvethenetwork'sdetectioncapabilityforsmallobjects.Then,theonlineconvolutionalre-parameterization(OREPA)is integratedintotheC2f moduletoenhancetheauracyrateandeficiencyofvehicleandpedestriandetectioninhigh-density environments.Finally,the WIoU- v2 isadopted asan alternative loss function to achieve higher localization accuracy. ExperimentalresultsontheKITTIvehicledetectiondatasetdemonstratesthat,incomparisonwiththeoriginalalgorithm,the accuracyrateof thedetectionoftheimprovedalgorithmisincreasedby3.6%,andthemeanaverageprecision(mAP)is enhanced by 4.2% .This experiment has proven its eficiency and superiority in the detection of vehicles and pedestrians.
Keywords:YOLOV8n;vehicleand pedestrian detection;small object detection;loss function;SPPF; C2f
0 引言
在道路目標(biāo)檢測(cè)任務(wù)中,傳統(tǒng)的目標(biāo)檢測(cè)特征泛化能力弱,對(duì)復(fù)雜場(chǎng)景的性能表現(xiàn)較差1,并且存在準(zhǔn)確率低和檢測(cè)速度緩慢等問(wèn)題。(剩余8220字)