基于雙池DDPG的邊緣計(jì)算卸載延時(shí)性能研究

打開文本圖片集
中圖分類號:TN929.5-34 文獻(xiàn)標(biāo)識碼:A 文章編號:1004-373X(2025)17-0117-07
DOI:10.16652/j.issn.1004-373x.2025.17.018引用格式:,等.基于雙池DDPG的邊緣計(jì)算卸載延時(shí)性能研究[J].現(xiàn)代電子技術(shù),2025,48(17):117-123.
Abstract:Withtheproliferationofcomputation-intensiveandlatency-sensitiveservices,itisdificultforthetraditional cloudcomputing modeltomettherequirementsoflowlatencyandhigh-qualityservices.Taskscanbeofloaded todgesubnets toreducelatencyandaleviatenetworkcongestionbythedistributededgecomputing mode.Inviewof theoffoadingproblemof collaborativecomputingonedgecomputingservers,acollaborativecomputing resourcealocationalgorithmbasedondep reinforcementlearningisproposed.Firstly,theoptimizationobjectiveisdeterminedaccordingtotheestablishedheterogneous edge network odel,thetasklatencyisinimied,andtheewardfunctionisiven.SecondlyaccordingtothetraditioalG (deepdeterministicpolicygradient)algorithm,thedual-polisintroducedtoclassifyandstorethedatatoimprovethequalityof empiricaldata.Finally,theagentistrainedtofindoutanoptimalstrategytoaapttotheenvironmenttoachieveboththeload balancingandtheresourceefectivealocationamongservers.Simulationresultsshowthat theimprovedD3PG(dual-poolDDPG) algorithmfullyconsiderstheheterogeneityofedgesubnetsandthemobilityofedgedevices,nditstask latencyisreducedby 3.8%~24.8%in comparison with that of the traditional learningalgorithms.
Keywords:heterogeneousnetwork;edge computing;computationofloading;task latency;deepreinforcementlearning; D3PG
0 引言
隨著無線通信技術(shù)的發(fā)展,計(jì)算密集型和延遲敏感型邊緣應(yīng)用業(yè)務(wù)不斷涌現(xiàn),這對網(wǎng)絡(luò)邊緣側(cè)的數(shù)據(jù)、算力、存儲等需求大幅提高。(剩余11306字)