基于改進YOLOv8n的PCBA外觀缺陷檢測

打開文本圖片集
中圖分類號:TN911.73-34 文獻標識碼:A 文章編號:1004-373X(2025)17-0176-05
DOI:10.16652/j.issn.1004-373x.2025.17.026 引用格式:,.基于改進YOLOv8n的PCBA外觀缺陷檢測[J].現(xiàn)代電子技術(shù),2025,48(17)::176-180.
PCBA surfacedefectdetection based on improved YOLOv8n
ZHOU Zhiwei,HAN Bin
SchoolofInformationandControlEngineering,SouthwestUniversityofScienceandTechnologyMianyang6Chir
Abstract:Thedesignsof modernPCBA(printed circuit boardasembly)arecomplex,andtheirdensitiesare getting higher andhigher.Thedistancesbetweencircuitsandcomponentsaregetingcloser.Thishigh-densitylayoutresultsinmoretypesand smallrrangesofdefectsonPCBA,increasing thedificultyof defectdetection.ImprovingtheLSKmoduleinYOLOv8nby combininglargekernelandsmallkernelconvolutionscancapturefeaturesofdiferentscales,therebyimprovingthereliabilityof appearance defect detection.Inviewof this,aPCBAappearance defectdetection method basedonimproved YOLOv8nis studied.FirstlyeferigtotenetworkstructureofSlim-neck,theetworkstructureofNeckisimproedtoachievelighweight. Secondly,theintroductionofLSK modulesenhances themeanaverage precision (mAP)reduced due tothe lightweightnetwork structure.Then,byintroducingtheSEmodule,thenetworkstructureoftheHeadisimprovedtofurtherenhancethedetection performanceof themodel.Finally,theMPDIUlossfunctionisintroduced toenhance theabilityofsmallojectdetection.The experimentalresultsshowthatthemAPoftheimproved modelproposed inthispaperreaches95.2%onthePCBAappearance defect dataset, increasing by 3.1% in comparison with that of YOLOv8n. The validity of the proposed model is verified.
Keywords:PCBA;appearance inspection;defect detection; improved YOLOv8n; lossfunction;lightweightnetwork
0 引言
印制電路板(PCB)作為電子元器件安裝和電路電氣連接的載體,是各類型電子產(chǎn)品的重要組成部分,提高其生產(chǎn)制造水平,對于計算機、消費電子、通信設(shè)備等行業(yè)發(fā)展有著至關(guān)重要的作用。(剩余5216字)