基于改進(jìn)YOLOv8s的交通標(biāo)志識(shí)別方法

打開文本圖片集
引用格式:,,,等.基于改進(jìn)YOLOv8s的交通標(biāo)志識(shí)別方法[J].現(xiàn)代電子技術(shù),2025,48(17):145-152.
中圖分類號(hào):TN911.73-34;TP391.41 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1004-373X(2025)17-0145-08
Trafficsignrecognitionmethodbasedon improvedYOLOv8s
QINLunming1,ZHANGYunqi1,CUI Haoyang1,BIANHouqin1,WANGXi2 (1.CollegeofElectronicsandering,ShanghaiUniversityofElectricPower,ShanghaiO3O6,China; 2. eering,BeijingJiaotongUniversity,Beijing1Oo44,China)
Abstract:Inviewofthe missed detectionand false detectioncaused bythelarge scalechangeof traficsign images capturedbythecamerasofautonomousvehiclesandthelargeproportionofsmallobjects,aCMF-YOLOv8straffcsigndetection algorithmisproposed.Firstlythelarge-objectfeatureextractionlayersanddetectionheadsoftheoriginalnetworkmodelare removed,andthesmall-objectdetectionheadsareaddedtoimprovethedetectionprecisionforsmallobjectsandreducethe parameterquantity.Secondly,animprovedcoordinateatentionmechanismisaddedtothebackbonenetwork,andtheglobal channelinformationisobtainedbyglobalaveragepoolingandconvolution,andthefeaturemapisprocessed incombinationwith positioninformation,soastoimprovetheobjectdetectionacuracyofthemodelincomplexenvironments.Additionalythe FasterNetmoduleisused torefietheC2fmoduleoftheoriginalmodelandreduce theparameterquantity.Finaly,the MPDIoU lossfunctionisintroducedtotakeaccountofthenon-overlappingareas,centerdistances,andwidth-heightdeviations comprehensivelybyvertexcoordinates,whichoptimizes thecomputationprocessandimproves thedetectionacuracy. Experimental resultsshow that theCMF-YOLOv8salgorithmachieves amean average precision (mAP)of91.2%,with amodel parameter quantity of 2.7×106 .In comparison with the original YOLOv8s model,the mAPof the proposed model is improved by 5.7% ,anditsparameterquantityisreducedby76%.Inaddition,itsrecognitionaccuracyofoverlappngandoccludedtraffic signs is higher,which is of practical significance to the safety of autonomous driving.
Keywords:traficsigndetection;MPDIoUlossfunction;Channel_CAmechanism;FasterNet module;smallobject detection;autonomous driving;CMF-YOLOv8s
0 引言
隨著人工智能的快速發(fā)展,帶動(dòng)了各行各業(yè)的一系收稿日期:2024-09-13 修回日期:2024-11-15列科技變革,在自動(dòng)駕駛領(lǐng)域掀起了開發(fā)熱潮。(剩余12694字)