蘇里格氣田召51區(qū)塊自動(dòng)間開井油套壓AI時(shí)序預(yù)測研究

打開文本圖片集
中圖分類號(hào):TP311.1 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):2095-2945(2025)18-0067-04
Abstract:Thewelheadcasing pressureofhighwater-containingtightsandstonegasreservoirinSuligeisanimportant indicatortoreflecttheproductionperformanceofgaswellandformationenergystatus.Inordertoaccuratelypredictthe changesofcasingpressure,ensureeficientproductionofgaswels,andavoidabnormalevents,historicaldataofcasing presure ofautomaticshut-inwelsin Block Zhao51of Sulige GasFieldareselected,andfiveindicatorsincludingRMSE,R, MAE,MBE,andMAPEarecomprehensivelyused toquantitivelyevaluate BP,GA-BP,PSO-BP,RBF,ELM,RF,SVM,CNN, LSTMtheperformanceofthesenineartificialintellgencemodelsinthisblock.Theresultsshowthat,inBlockZhao51,the optimalodelforAItimeseriespredictingoilpresureisRBF,andtheoptimalmodelforAItimeseriespredictingcasing presureisPSO-BP.Itcanpredictthechangeofcasingpressureingaswelsinthenext48hours,anditsgeneralization abilityis5times higherthanthatoftheRFmodelwithpoorcomprehensiveevaluationperformance.Theresearchresultsareof greatsignificanceforimprovingtheaplicabiltyoftecasingpressrepredictionmodelintheblockandgivingfullplaytothe productivity of gas wells.
KeyWords: RBF;PSO-BP;production system optimization; casing pressure prediction; AI timing
蘇里格氣田召51區(qū)塊目前有20口氣井配備自動(dòng)化間開設(shè)備,需進(jìn)一步向智能化轉(zhuǎn)型,結(jié)合人工智能技術(shù)優(yōu)化生產(chǎn)制度提高采收率。(剩余4119字)