基于集成學(xué)習(xí)的安卓惡意軟件特征提取與檢測(cè)方法

打開(kāi)文本圖片集
中圖分類(lèi)號(hào):TP311.5 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):2095-2945(2025)18-0045-05
Abstract:Android,asthemostpopularoperatingsystemtodayofersconvenience tousersthroughitsopennessandwide application.However,thissameopennessalsoprovidesopportunitiesformalwaredevelopment,posingsignificantthreatstousers personalprivacyanddatasecurity.Toaddressthisisue,thisstudyproposesanintegratedlearning-basedmethodforfeature extractionanddetectionofAndroidmalware.TheauthorizationrequestofAndroidAPKisextractedasfeaturepointsthrough automatedscripts,combinedwithanenhancedsupportvector machine(E-SVM)modelandaconvolutionalneuralnetwork (CNN)modelforintegratedlearningtraining,generatedahybridmodel,andusedtoimprovethedetectionrateofAndroid malware.Final experimental data shows that the detection accuracy rate for malware reaches more than 96%
Keywords:malware;machinelearning;deep learning;inheritancelearning;feature extractionand detection
現(xiàn)如今,Android作為全世界最為流行的作業(yè)系統(tǒng),占有著全世界百分之八十的市場(chǎng)份額,已經(jīng)擁有了成千上萬(wàn)的用戶(hù)。(剩余5270字)