基于Q學習與粒子群優(yōu)化算法的工控系統(tǒng)安全防護策略選擇模型

打開文本圖片集
中圖分類號:TP391 文獻標志碼:A 文章編號:2095-2945(2025)18-0005-05
Abstract:Inordertoimprove thesecuritylevelofindustrialcontrolsystemsandreducethethreatcausedbynetwork attacks,aprotectionstrategyselectionalgorithmcombiningQ-learingandparticleswarmoptimizationalgorithmisproposedThe experimentalresultsshowthat,whennoprotectivestrategyisimplemented,thebenefitsthatcanbebtainedfromtheattckcan reachupto547.3.AfterimplementingtheparticleswarmalgorithmandBayesianatackgraphselectionprotectionstrategy,the benefitsobtainedfromtheatackdecreasedto432.5and398.7respectivelyWhenimplementingtheprotectivestrategyselected bytheimprovedparticleswarmoptimizationalgorithmbasedonQ-learning,theatackbenefitdecreasedto325.6.Theabove resultsindicatethattheprotectionstrategyselectedbytheimprovedparticleswarmoptimizationalgorithmbasedonQ-learning cansignificantlyreduceattack benefitsand effectivelyprotect industrial control systems from network atacks.
Keywords: industrial control system;securityrisk; Qleaming;particleswarmoptimizationalgorithm; protectionstrategy
隨著工業(yè)控制系統(tǒng)網(wǎng)絡化浪潮的推進,工控系統(tǒng)的電子化程度逐漸增加。(剩余6032字)