元學(xué)習(xí)混合模型預(yù)測(cè)中國(guó)生豬價(jià)格方法研究

打開文本圖片集
中圖分類號(hào):F323.7 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):2096-9902(2025)13-0001-05
Abstract:Accuratelypredictingpigpricefluctuationsisof greatsignificance tomaintaining thebalanceofmarket supply anddemand,optimizingproductiondecisionsandensuringthestableoperationoftheindustrialchain.Aimingattheshortcoming oftraditionalpredictionmethodsininsuffcientgeneralizationabilityinsmallsamplescenarios,thispaperconstructsahybrid predictionframeworkbasedonSeasonal-TrendDecompositionusingLOESS(STL)andModel-AgnosticMeta-Learning(MAML). Specificall:First,STLdecompositionisusedtodecouplethetimeseriesdataofpigpricesintothreecomponents:trendterms, seasontermsandresidualterms,whichefectivelyenhances featureinterpretabilityandsuppresesnoiseinterference;thena dual-stagemeta-learningmechanismisdesigned-inthebasictrainingstage,LSTMandGRUnetworkarchitecturesareusedto conductmuti-taskpre-trainingonpigandporkpricestolearnsharedfeaturerepresentationsofpricefluctuationsacrossbreds; Intherapidadaptationstage,therapidmigrationofthemodelinsmallsampletargetscenariosisachievedthroughcolaborative optimizationofMAMLsinternalloopparameterfine-tuningandexterallopmeta-parameterupdate.Empiricalresultsshowthat thismethodhassignificantimprovementoverthebenchmarkmodelintermsofroot-mean-squareeror(RMSE)andmeanabsolute eror(MAE)indicators,providinganinterpretableandtransferabledecisionanalysistolfortheconstructionofagricultural economic early warning systems.
Keywords: pig price prediction; meta-learning; MAML; STL; LSTM和機(jī)器學(xué)習(xí)方法。(剩余8409字)