基于GRNN的特高壓直流輸電線路故障識(shí)別方法

打開文本圖片集
關(guān)鍵詞:廣義回歸神經(jīng)網(wǎng)絡(luò);特高壓直流輸電線路;繼電保護(hù);廣義S變換;故障識(shí)別DOI:10.15938/j. jhust.2025.02.014中圖分類號(hào):TM723 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1007-2683(2025)02-0131-09
Abstract:Aprotection methodforultra-highvoltage directcurenttransmisson linesbasedongeneralizedregressonneural network(GRNN)isproposedtoaddresstheisuesofeasyrejectionandlongfault detectiontimeinultra-highvoltagedirectcurrent protection.FirstlyasedonthegneralizedStransfo,thefaultcharacterisiciformationintefrequencydomainistaindto constructhe input data for GRNN.Secondly,thechaosquantum particleswarm optimization(CQPSO)algorithm isused tooptimize theparametersofthegeneralizedregressonneuralnetwork,foranidealnetworkmodelbasedontheprincipleofthelowestfinss function,andbeterlathultcharacterissofthulra-hghvageDCtrasmssonlne.TeSofaxlasifierisuiledto clasifydep-levelfeatures,dentifingfaultsasexteal,us,orlinefults,andpolarizingtemintopositive,negative,orbipolar faults,thenoutpuigrecogitioesultsinally,heultra-higagediecturnt tasmissnodelbuiltineCA/C simulatioenvronmentisvalidated,andtevadationresultsshowedthattheproposedmethodhasgoodpeformanceinfaultetection andfaultpoleselectionofultra-highvoltagedirectcurenttransmissionlinerelaprotectionComparedtotradionalonolutional neuralnetwoks,generalizedregressionneuralnetworks,upportvectormacines,andotermethods,thefultrecognitionacyof the proposed method in this paper has been improved by 6.6% , 0.65% ,and 7.69% ,respectively,meeting the requirements of protection speed and reliability.
Keywords:generalizedregressonneuralnetwork;UHVDCtransmissionline;relayprotection;generalizedS-transform;faulti dentification
0 引言
隨著新型電力系統(tǒng)建設(shè)的推進(jìn),特高壓直流輸電由于其傳輸容量大、傳輸距離遠(yuǎn)、線路損耗少等顯著優(yōu)勢(shì),可以很好地接入分布式電源和儲(chǔ)能裝置,進(jìn)而推進(jìn)我國“雙碳”目標(biāo),故研究特高壓直流輸電技術(shù)已經(jīng)成為熱點(diǎn)。(剩余13451字)