結(jié)合特征降維和NGO-CNN-BiLSTM的招考智慧平臺網(wǎng)絡(luò)異常流量檢測方法

打開文本圖片集
關(guān)鍵詞:招考智慧平臺;特征降維;卷積神經(jīng)網(wǎng)絡(luò);雙向長短期記憶網(wǎng)絡(luò);北方蒼鷹優(yōu)化算法DOI:10.15938/j. jhust. 2025.02.007中圖分類號:TP391 文獻標志碼:A 文章編號:1007-2683(2025)02-0064-09
Abstract:Inviewofthechalengesbroughtbycomputervirusesandnetwork maliciousattckstotheoperationandmaintenanceof therecruitmentintelligentplatfomsystem,thispaperproposesamethodtodetectabnoaltraffcofthercruitmentsmartplatfor basednfeaturedimensionalityreductioncombinedwithNorthernGoshawkOptimization(NGO)tooptimizeconvolutional neural network(CNN)andBi-directionalLong Short-Trm Memory(BiLSTM).Byusing theKernelPrincipal ComponentAnalysis(KPCA) methodtoreducethedimensionalityofthenonlinearinformationcontaindinthedataset,therduceddataisusedasinputforthdep learningnetworkmodel.Then,theconvolutionkernelofCNNisoptimizedbyNGOtoobtaintheoptimalconvolutionkerel,andthe abnormatraffcwasdetectedbyBiLSTM.TheCIC-IDS-2017datasetisusedtoanalyzethetrainingandtestsamplesoftheitrusion detectionnetworkmodel,andtheacuracyandrainingtimeareimprovedcomparedwithother methods,whichconfirmsthefeasibility and effectiveness of this method.
Keywords:recruitmentintellgence platfom;featuredimensionalityeduction;ConvlutionalNeuralNetwork;Bi-directioalLong Short-Term Memory; Northern Goshawk Optimization
0 引言
招考智慧平臺具有更高的開放性,而開放性必然導(dǎo)致潛在的安全威脅,如何提升招考智慧平臺的入侵檢測系統(tǒng)的流量數(shù)據(jù)分析處理能力,并提高網(wǎng)絡(luò)攻擊檢測效率、異常數(shù)據(jù)分類精度和入侵檢測的自動化水平,是招考智慧平臺網(wǎng)絡(luò)安全面臨的核心和關(guān)鍵問題。(剩余13349字)