基于對(duì)比學(xué)習(xí)的三維模型分類

打開(kāi)文本圖片集
關(guān)鍵詞:三維模型分類;對(duì)比學(xué)習(xí);卷積神經(jīng)網(wǎng)絡(luò);注意力機(jī)制;遷移學(xué)習(xí)DOI:10.15938/j. jhust.2025.02.004中圖分類號(hào):TP391 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1007-2683(2025)02-0032-10
Abstract:At present,3Dmodelclasification hasbeenaresearch hotspot.Masive3Dmodels notonlyhavediversityineach class,butalsoavesimilaritisbetweenclases,whichseriouslyafect theclasificationaccuracyof3Dmodels.Weproposea3D modelclassficatiomethodbasedootrastielaingIntstod,thengisdidedintompledisiatioagead aclassifictionstage.Inthestageofsamplediscrimination,3Dmodelsofthesamecategoryaremutuallpositivesamples,and3D modelsofothercategoriesaremutuallyegativesampls.Thecontrastivelossisusedtoconstraintesamplefatures,ndtepositive andnegativesamplesareappedtothesingle-centerunithypersphereinthesamespace toobtainagoodsemanticrepresentationspace of3Dmodellasification.Inaditon,inodertocapturethecorelatinbetweentheviewsandthekeyareasintheviews,amultiheadslf-attentionmoduleandspatialatentionmoduleareintroducedinteaper.Moreover,thechaelatentionisddednthe multi-headself-atentionmoduletoobtainthechanneldimensioninformation.Intheclasificationstage,thenetworkmodelis trasferredtotheclassficationtaskbyfine-uningtenetworkparametrstocompletethe3Dmodelclasification.Theexperiental results show that the classification accuracy of the 3D model respectively reaches 99.4% and 97.5% on the ModelNet1O and ModelNet40 datasets.
Keywords:3Dmodel classification;contrastive learning;convolutionneural network;atention mechanism;transferleaing
0 引言
人類的視覺(jué)感知具有三維立體性,并且三維模型相較于文本、圖像等擁有更加豐富的信息,因而三維模型在機(jī)器人、工業(yè)設(shè)計(jì)、無(wú)人駕駛等新興領(lǐng)域有著舉足輕重的作用。(剩余16242字)