基于多級殘差跳躍連接網(wǎng)絡(luò)的圖像超分辨率重建

打開文本圖片集
關(guān)鍵詞:圖像超分辨率重建;SRGAN;坐標(biāo)注意力機(jī)制;多級殘差跳躍連接網(wǎng)絡(luò);PatchGANDOI:10.15938/j. jhust.2025.02.008中圖分類號:TP391 文獻(xiàn)標(biāo)志碼:A 文章編號:1007-2683(2025)02-0073-09
Abstract:Imagesuper-resolutionreconstructiontechnologycanconvertlow-resolutionimagesintohigh-resolutionimageswith higherpixeldensityndclearedetailsandplaysanimportantoleiniliaryandmedicalfields.imingatteproblemofisfiient processingoftexturedetailsandcolorrestorationdegreeinexistingimagesuper-resolutionreconstructionalgorithms,amulti-level residualskipcoectionetwork(MRSCN)basedoncordinateatentionmechanismisproposedandapliedtothe SRGANmodel to realizefullutilizatiooflow-resolutionimagefeatures.Itisusedtorecoverthedetailsoftheimageandtooptimizetheperceivedloss using Charbonnier loss and TVloss.This algorithm is tested on Set5,Set14,Bsd100 and Urban100 data sets for 4x super-resolution reconstruction.Compared withothercommonlyusedsuper-resolutionalgorithms,thisalgorithmcanbeterretaintexturedetailsduring imagereconstruction,esultinginclearerimagedetails,etervisualfectsandetivereductionofteumberofparametersnth network.Intermsofobjectiveevaluationindicators,theaveragevalueofPSNRandSIMincreasedbyO.503dBand0.0076 respectively compared with the original SRGAN.
Keywords;image super resolution reconstruction;SRGAN;coordinate atention mechanism;multi-level residual skipcoectior network;PatchGAN
0引言
圖像超分辨率重建(image super-resolution re-construction,SR)技術(shù)是指將低分辨率(lowresolution,LR)圖像通過特定的算法恢復(fù)成具有更好的視覺效果和更清晰細(xì)節(jié)的高分辨率(highresolution,HR)圖像[1],目前已被廣泛應(yīng)用于人臉識別、醫(yī)學(xué)成像[2]、軍事遙感[3]和圖像視頻處理[4]等領(lǐng)域
傳統(tǒng)的圖像超分辨率重建算法以基于機(jī)器學(xué)習(xí)方法為主,常見的重建方法可以分為以下3類:基于插值[5]、基于重建[和基于學(xué)習(xí)的方法。(剩余14100字)