基于融合采樣和圖網(wǎng)絡(luò)的三維目標(biāo)檢測

打開文本圖片集
中圖分類號:TP391.41 文獻(xiàn)標(biāo)志碼:A 文章編號:1007-2683(2025)02-0042-11
Abstract:Inthe3Dtargetdetection technologybasedonpointcloud,there areproblems likehighcostof pointcloudcalculation andlargegap betwee targetscales,whichleadtolowtargetdetectioneficiency.Inresponse,thispaperproposesa3Dbject detectionalgorithmbasedonfusionsamplingandgraphetworks.Firstly,thepointcloudfusionsamplingtechnologyisintroducedto sampletheoriginalpointcloudtoeducethecomputatioalcomplexitySecondlytheK-NNalgorithisusedtoconstructtheapof thesampledpointcloud,andsub-imagesamplingisintroducedtosolvetheproblemofover-smothgraphconvolution.Finally,the featuresofgraphnodesareupdatedthroughfeatureinteraction toimprovethefeatureextractionabilityofthenetwork,thereby improvingthetargetdetectionefect.ThisstudyconductedexperimentsontheKIT3Ddataset.Comparedwith thebenchmarkmodel Point-GNN,the detection accuracy of the car target was improved by 3.89 % . In the simple scene and the medium difficulty scene,the detection accuracy of the cyclist target is increased by 6,60% and 4.36% ,respectively.
Keywords:point cloud; 3D object detection;graph neural network;fusion sampling;feature fusion
0 引言
在自動駕駛系統(tǒng)中,激光雷達(dá)作為環(huán)境感知設(shè)備被廣泛應(yīng)用。(剩余17257字)