前景與背景交互融合網(wǎng)絡(luò)用于偽裝目標(biāo)檢測(cè)

打開(kāi)文本圖片集
關(guān)鍵詞:偽裝目標(biāo)檢測(cè);前景與背景信息;非局部注意力;特征交互;特征融合DOI:10.15938/j. jhust.2025.02.006中圖分類(lèi)號(hào):TP391.4 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1007-2683(2025)02-0053-11
Abstract:Aiming atthe problem of incompletedetectionresultsand blurrededgedetailsincurrentcamouflagedobjectdetection (COD)methods,anovelForegroundand BackgroundInteractiveFusionNetwork(FBIFNet)wasproposed tofurtherimprovethe performanceofCODthroughjointexplorationofforegroundandbackgroundregions.FBFNetcontainsakeyBilateralInteractiveusion module(BIF),whichusesapairofcomplementaryatentionstoguidethenetwork tojointlyreasonaboutcamouflagedobjectsfrom bothforegroudandbackgrounddirectionsndalsoutilizesaninteractionstrategybasedonthebidirectionalatentionmechanismanda weighted fusionstrategytoleancomplementaryiformationbetweenforegroudandbackgroundIndition,anAtentionalCascaded Positioning module(ACP)isincluded,whichcanlocalizecamouflagedbjectsfromaglobalperspectiveandprovidemoreacurate foregroundandbackgroundguidanceforBIF.Withthetwoproposedmodules,F(xiàn)BIFNetcanmoreaccuratelydetectcamouflaged objects.Extensive experimentsonthree publicdatasets(CAMO,CODlOK,and NC4K)demonstrate thatthe proposednetwork outperforms state-of-the-art methods in related fields on four evaluation metrics.
Keywords:camouflagedbjectdetection;foregroundandbackgroundinformation;non-localatention;feature interaction;featur fusion
0 引言
偽裝是大自然中獵物為了躲避捕食者所進(jìn)化出的獨(dú)特能力。(剩余16994字)