基于CNN和Bi-LSTM模型的蛋白質(zhì)甲基化位點識別

打開文本圖片集
關(guān)鍵詞:甲基化;卷積神經(jīng)網(wǎng)絡(luò);雙向長短時記憶網(wǎng)絡(luò);特征融合;位點識別DOI:10.15938/j. jhust.2025.02.009中圖分類號:TP391.4 文獻標志碼:A 文章編號:1007-2683(2025)02-0082-09
Abstract:MethylationisaproteinPost-Translational Modification(PTM)thatregulatescellfunction,whichcanprovideguidance andhelpforresearchinthefieldsofgeneregulationanddiseaseprediction.Atpresent,therearesomeproblemsintheresearchof methylationsiterecogitin,suchasfewlabeleddtasets,nsuffcentpositivesmpledataandlowrecogitionaccracyofhylation research.Inordertosolvetheseproblems,thispaperproposesaproteinmethylationsiterecognitionmethodbasedonConvolutional NeuralNetwork(CNN)andBi-directionalLongShor-TermMemory(Bi-LSTM)model.Ourmodelisdividedintotwobranches.The CNNbranchusesadenseconnectionmethodtomakethefeatureinformationofachlayerfull transmitedandshared.ThestackedBiLSTMbranchesobtainbidirectionallong-termdependenciesinthesequence,andthenthetwobranchesperform featurefusionfor methylationrecognition.ExperimentsshowthattheAccuracy(ACC),F(xiàn)1Score(F1score)andMatthewsCorrelationCoficient (MCC)obtainedbyusingourmodeltoidentifymethylationsitesareO.8519,0.8494andO.7284,respectively.Compared with other methods,the model has better performance.
Keywords;methylation;convolutionalneuralnetwork;bi-directionallongshrt-termmemory;featurefusion;siterecogition
0 引言
甲基化是一種翻譯后修飾(post-translationalmodification,PTM),通過向蛋白質(zhì)結(jié)構(gòu)中添加甲基來修飾蛋白質(zhì)的功能和構(gòu)象,在表觀遺傳過程中發(fā)揮著重要的作用[]。(剩余15029字)