基于無人機多光譜圖像的小麥葉片氮含量遙感監(jiān)測研究

打開文本圖片集
關鍵詞無人機;多光譜圖像;小麥葉片氮含量;監(jiān)測模型
中圖分類號S127文獻標識碼A
文章編號 0517-6611(2025)08-0243-05
doi:10.3969/j.issn.0517-6611.2025.08.049
開放科學(資源服務)標識碼(OSID):
AbstractToacheeprecise,eient,dynamicandlow-ostirogenutrientmoitingincoprductioandpromoteteapiddance mentofnew-ualitgiulturalproductivityTsudyassdothexperenllyeasueddatain24adtokmadal cle(UAV)imagesasthedatasourcetoanalyzethe modelsbetwenthemainremotesensingparametersandleaf nitrogencontent(LNC)of weatatthejoitigsageandotigsage.TeresultsohatitieasibletmoiratLCattejtigstageandotigsagby usingthe normalizedgree-bluedierenceindex(NBD)ed-gen-buevegetationidex(RGBV)andRGBVIexcessrdE)ote sensingvariablsspetivelyOntissis,saiallstributedasofofatattejtigsagendotingageodby UAVremotesensigwithpracticalignificaneerefabricatedThresearchfidingscanprovidchncalsuportforagiculturalmangt departments to obtain reliable agricultural condition information and formulate precise fertilization management.
Key wordsUAV;Multispectral image; Wheat leaf nitrogen content;Monitoring model
小麥是江蘇省最主要的大田作物,已成為全國重要的小麥主產(chǎn)區(qū),對國家糧油安全具有重要意義。(剩余5646字)