基于改進(jìn)Swin-Transformer的果樹病葉分類模型

打開文本圖片集
中圖分類號:TP391.4 文獻(xiàn)標(biāo)志碼:A 文章編號:2096-9902(2025)14-0033-04
Abstract:Inrecentyears,climatechangeandchangesinagriculturalactivitieshaveincreasedthefrequencyandseverityof plantdiseases,havingamajorimpactonfoodproductionandqualitysafety.Therefore,toensurefoodsecurity,timelyand accuratedetectionanddiagnosisofplantdiseasesarecrucial.Thispaperdesignsatreediseaseleafclassficationmodelbased ontheimprovedSwin-Transformer,whichoptimizesfeaturesbyintegratingdual-pathatentionmechanisms.Atthefeature processinglevel,amulti-levelprocesingstructureicludinglayerandardzatiodaptivepolingndfullonecdasif isdesiged.ThiscompositearchitecturemaintainsteadvantagesofTransfomersglobalmodelingandsignificantlyimprovesthe eficiencyofcapturingfine-grainedpathologicalfeaturesthroughanatention-guidedfeatureenhancementmechanism.The proposed model achieves greater accuracy than previous convolution and visual transformer-based models.
Keywords:deeplearning;atentionmechanism;convolutional neural network;plantdiseaserecognition;smartagriculture
植物病害是導(dǎo)致糧食產(chǎn)量與質(zhì)量降低的重要因素。(剩余5333字)