煙苗整齊度評估分析模型研究

打開文本圖片集
(1.,南寧53000;2.,重慶400715;3.,重慶奉節(jié)404600)
中圖分類號:S572;S126文獻標識碼:A
文章編號:1007-5119(2025)02-0101-12
An Analytical Model for Assessing Tobacco Seedling Uniformity
LI Qunling1, SUN Jiazhao, WANG Zhenguo3, CHENG ,RAN Yu'ao2, LI ,DING Wei1*
(1.ChinaTobaoagxistrialCoLtd.,ago,Cina;2.CllgeoantrotectioouthwstUiy
Chongqing 40o715,China;3.FengjieBranchofChongqingTobacoCompany,ChinaNationalTobacco Corporatio,Fengie 404600, Chongqing, China)
Abstract:Toacheverapidassessmentandeficentanalysisoftheuniforityoftobaccosedlings inintensiveedlingfactorythis studyemploysageneralizedaditive model(GAM)toanalyetobaccoseed nurserydataadscrnfor idicatorsoftobaccoseedling uniformity. We evaluatedRandomForest algorithm,BPNeuralNetworkalgorithm,and Support VectorMachine(SVM)algorithm. Particle Swarm Optimization (PSO)isthen appliedtooptimizeeachof these modelsseparately.Thisstudyconstructed image recognitionmodelsforassessingtheuniforityof tobaccseednurseryusingdeepleaingalgorithms,twooptimizers,Adamand Nadam,specificallyAlexNet,ResNet-10l,and GoogleNet.Teresearchresultsindicated thattheplantheight,stemcicuferee, and numberofefectiveleaves of tobaccoseedlings hadasignificantimpactontheuniformityofthe tobaccoseedlings.ThePartcle Swarm Optimized Random Forest model demonstrates the best performance, with accuracy of 8 8 . 0 0 % valueof O.69,andMean AbsoluteError(MAE)of 0.13.TheAdam-GoogLeNet modelshows thebestrecognition performance,averagingacuracyof 9 3 . 8 9 % Overall,findings of thisstudy provideareasonable basis for thescientificevaluationoftobacco nurserybeduniformityand offer support for the development of tobacco seedling uniformity image recognition systems.
Keywords: tobacco seedbed; uniformity index; deep learning; uniformity model; image recognition
煙草是一種重要的經濟作物,煙苗整齊度是煙草生產的關鍵指標之一,直接影響田間管理效果。(剩余23225字)