基于隨機(jī)森林算法的轎車碰撞損傷預(yù)測(cè)研究

打開文本圖片集
中圖分類號(hào):TN911.7-34;TP181 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1004-373X(2025)16-0139-07
Research onvehicle collision damage prediction based on random forest algorithm
LIU Xin, LIU Conghao,LI Gang,AN Xunan,TONG Shiyu, SUN Yilong (SchoolofAutomotiveandTransportationEngineering,LiaoningUnversityofTechnology,Jinzhouooo,China)
Abstract:Inorder tominimize thedegreeofdamage suferedbyvehiclesinunavoidablecollsionscenariosand improve roadtrafficsafety,avehiclecollsiondamageprediction modelbasedonthecollsionsimulationdatasetandtherandomforest algorithmisproposed.Thefiniteelementmodelofvehiclecolionsimulationisestablished,andthevehicledamagedataset under16Osetsofwokingcondiionsisobaindbyangingtheollier,collisonangle,collisonoffet,collisonsdetc. This datasetisused toestablishanavehiclecolision damage prediction model basedontherandom forest algorithm,nd the damagepredictionforautomobilecollisionsisprformed.Themultipletestingresultsshowthatthecollsiondamageprediction modelhas an averageabsolute percentage errorof20.09%androot meansquareerorof 3394.Incomparison withthe support vectormachinepredictionmodel,therandomforestcollsiondamagepredictionmodelhasbeterfitingeffect,andthedegreeof dispersion between the predictedandreal values islower,whichcan more acuratelypredict the specificdamagevaluesof the keypointsofthevehicleafteracollsion.Itcanprovideamoredetailedandaccuratereferenceforintelligentdrivingvehicle trajectory planning systems and adaptive constraints,so as to improve road safety.
Keywords:vehiclecollisiondamageprediction;randomforestalgorithm;collisionsimulationdataset;collsioncondition setting;trajectoryplanning;adaptive constraint
0 引言
目前,車輛智能化技術(shù)快速發(fā)展,已經(jīng)在汽車領(lǐng)域取得顯著成果。(剩余7034字)