TS-SEA:用于時間序列分類的時域-頻域-季節(jié)性聯(lián)合對比學(xué)習(xí)

打開文本圖片集
中圖分類號:TN911.7-34;TP301.6 文獻(xiàn)標(biāo)識碼:A 文章編號:1004-373X(2025)16-0038-07
TS-SEA: temporal-frequency-seasonal joint contrastive learning for timeseriesclassification
LIKun’,TANJun2,GUINing2,ZHUZhaowei3 (1.School ofSoftware,XinjiangUniversity,Urumqi 83oo91,China; 2.SchoolofComputer Scienceand Engineering,Central South University,Changsha 41oo83,China; 3.School of Computer Scienceand Technology,Zhejiang Sci-Tech University,Hangzhou 311241,China)
Abstract:Timeseriesclasification (TSC)isthetaskofcategorizing sequentialdata intopredefined clasesaccording to their temporalpaterns.Real-world timeseriesusuallcontaincomplexcouplingoftrend terms,seasonalcomponents,outliers, andnoise,anditsacurateecompositioniscrucialtoimproveclasificationpeforance.Terefore,atimesriescassiication method,S-Ssoe,ichooiisnteioalydol FFTandSTL.Basedontheseviews,iterativelearningisrealizedbymeansofcontrastlearningbetweenencoders.Theresults indicate that incomparison with existing methods,theproposedTS-SEAmethodcanexhibitthebetterperformance whendealing with diverse time series applications.
Keywords:TS-SEA;timeseriesclasification;multi-viewjointlearning;contrastivelearnng;Fouriertransform;tieseries decomposition
0 引言
時間序列數(shù)據(jù)在現(xiàn)實(shí)世界中隨處可見[1,對許多應(yīng)用至關(guān)重要,特別是在諸如醫(yī)療保健[2-3]、金融[4、交通[5-6]和工業(yè)生產(chǎn)等領(lǐng)域。(剩余11295字)