特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

基于MCSANet網(wǎng)絡的運動想象腦電分類

  • 打印
  • 收藏
收藏成功


打開文本圖片集

中圖分類號:TN929.5-34;TP391 文獻標識碼:A 文章編號:1004-373X(2025)16-0067-08

MotorimageryEEGclassificationbasedonMCSANet

DU Jiang1,2, BI Feng3 (1.SchoolofComputerScienceand Technology,Shenyang UniversityofChemicalTechnology,Shenyang11o142,China;

2.LiaonngProvincialKeyLaboratoryofIntellgentTechnologyforChemicalProcessIndustryhenyang1O142China;

3.SchoolofInformationEngineering,LiaodongUniversity,Dandong118Oo3,China)

Abstract:Inordertosolve theproblemof insuficient feature miningand insufficient utilization indecoding electroencephalography(EG)signalsbymeansofthetraditionaldeeplearningmethod,aeeplearningmodel,MANet,is proposed,whichcombinestheparalelmulti-scaletemporalconvolutionwithsliding windowtechnologyandatentionmchanism. Theparalelmulti-scaletemporalconvolutionissedtofectivelycapturethetmporalcharacteristicsandspatialchracteistics ofEEGsignalsatdiferenttimescales.Theslidingwindowslicingtechnologyisusedtodividethefeaturesequencesand increase the numberof sequence samples.The weights ofeach partofthe sequence samples areasignedandfused by means of themulti-headself-atentionmechanism,whichcanfurther highlightmorekeyfeatures.Thefullyconnectedlayerandthe SoftMaxlayerareusedtowork together,soastoperformin-depthlearningandaccurateclasificationforthecapturedfeatures. Inorder tovalidatetheperformaneofthemodel,anexhaustiveexperimentalanalysiswasperformedontheBCICIV-2adataset. Theexperimentalresultsshowthattheaverageclassificationaccuracyofallsubjectsisashighas81.69%,whichverfisthe effectivenessoftheproposedmethodinminingthedeeppotential featuresofEEGand improvingtheclasificationperformance of motor imagery EEG.

Keywords:braincomputer interface;EEGsignal;parallelmulti -scale temporal convolution;sliding window slicing technology;multi-head self-attentionmechanism;ablation experiment

0 引言

解碼人或動物大腦產(chǎn)生的腦電信號,實現(xiàn)腦與外部設備之間的信息交換[。(剩余11652字)

monitor