基于MCSANet網(wǎng)絡的運動想象腦電分類
中圖分類號:TN929.5-34;TP391 文獻標識碼:A 文章編號:1004-373X(2025)16-0067-08
MotorimageryEEGclassificationbasedonMCSANet
DU Jiang1,2, BI Feng3 (1.SchoolofComputerScienceand Technology,Shenyang UniversityofChemicalTechnology,Shenyang11o142,China;
2.LiaonngProvincialKeyLaboratoryofIntellgentTechnologyforChemicalProcessIndustryhenyang1O142China;
3.SchoolofInformationEngineering,LiaodongUniversity,Dandong118Oo3,China)
Abstract:Inordertosolve theproblemof insuficient feature miningand insufficient utilization indecoding electroencephalography(EG)signalsbymeansofthetraditionaldeeplearningmethod,aeeplearningmodel,MANet,is proposed,whichcombinestheparalelmulti-scaletemporalconvolutionwithsliding windowtechnologyandatentionmchanism. Theparalelmulti-scaletemporalconvolutionissedtofectivelycapturethetmporalcharacteristicsandspatialchracteistics ofEEGsignalsatdiferenttimescales.Theslidingwindowslicingtechnologyisusedtodividethefeaturesequencesand increase the numberof sequence samples.The weights ofeach partofthe sequence samples areasignedandfused by means of themulti-headself-atentionmechanism,whichcanfurther highlightmorekeyfeatures.Thefullyconnectedlayerandthe SoftMaxlayerareusedtowork together,soastoperformin-depthlearningandaccurateclasificationforthecapturedfeatures. Inorder tovalidatetheperformaneofthemodel,anexhaustiveexperimentalanalysiswasperformedontheBCICIV-2adataset. Theexperimentalresultsshowthattheaverageclassificationaccuracyofallsubjectsisashighas81.69%,whichverfisthe effectivenessoftheproposedmethodinminingthedeeppotential featuresofEEGand improvingtheclasificationperformance of motor imagery EEG.
Keywords:braincomputer interface;EEGsignal;parallelmulti -scale temporal convolution;sliding window slicing technology;multi-head self-attentionmechanism;ablation experiment
0 引言
解碼人或動物大腦產(chǎn)生的腦電信號,實現(xiàn)腦與外部設備之間的信息交換[。(剩余11652字)
-
-
- 現(xiàn)代電子技術
- 2025年16期
- 高精度電流傳感器溫度補償方法的...
- 基于YOLOv5的無人機橋面病...
- 基于RF-EHWSN的能量自適...
- 光電二極管放大電路的SPICE...
- 基于智能家居中控屏的設備控制方...
- 基于MVMD-互相關時頻域特征...
- TS-SEA:用于時間序列分類...
- 投影子空間下人體動作序列預測研...
- 結合深度學習和自適應的業(yè)務動態(tài)...
- 基于DSM的最小化總返工次數(shù)的...
- 基于集成學習的交通事故嚴重程度...
- 基于MCSANet網(wǎng)絡的運動想...
- 前鏡參考型非定域干涉測角系統(tǒng)研...
- 綜采工作面刮板輸送機煤流輪廓點...
- 基于FFT-DC-GRU-NL...
- 基于GA-LSTM神經(jīng)網(wǎng)絡的充...
- 基于改進YOLOv7-tiny...
- 基于卷積神經(jīng)網(wǎng)絡和Transf...
- 考慮高低頻特征的視覺離焦圖像暗...
- 基于機器學習的區(qū)域性綜合資源調(diào)...
- 多模態(tài)資源檢索與跨模態(tài)圖譜構建...
- 基于隨機森林算法的轎車碰撞損傷...
- 基于多傳感器信息融合的運動軌跡...
- 一種空天大尺度構型下雙基雷達等...
- LSTM-MSTCN-XGBo...
- 基于動態(tài)自適應的電梯鋼帶典型故...
- 人工智能大數(shù)據(jù)技術在治理虛擬貨...
- 基于計算機視覺的機器人軌跡精度...
- 輪式機器人EMB制動最佳滑移率...