基于GA-LSTM神經(jīng)網(wǎng)絡(luò)的充電樁故障診斷

打開文本圖片集
中圖分類號:TN919-34;TP183 文獻標識碼:A 文章編號:1004-373X(2025)16-0097-08
DOI:10.16652/j.issn.1004-373x.2025.16.016
Charging pile fault diagnosis based on GA-LSTM neural network
ZHOU Jin, GAO Tian,WANG Qiang, YIN Zhangcheng, ZHU Jinrong (Collegeof InformationEngineering,Yangzhou University,Yangzhou 225ooo,China)
Abstract:Thechargingdataofelectricvehiclechargingfacilitiesincludesvoltage,current,temperature,power,etc.allof whicharetimeseriesdata,andthedatahasthecharacteristicsofinfluencingtheprevioustimeandasociatingthenexttime. Thelongshort-termmemory(LSTM)neuralnetworkisusedtominethecorelationfeaturesinthedatavolume,andthefeature modelbetweentheworkingdataandthefaultisestablishedtoconductthefaultdiagnosisofchargingpile.Duetotheproblems ofoverfitingandgetingstuck inlocaloptimainLSTMneuralnetworks,ageneticalgorithm(GA)isproposed tooptimizethe LSTMneuralnetwork forfaultdiagnosisofcharging piles.GAisusedtosearch fortheoptimal solutionbysimulating the biologicalevolutionprocessindividualswithhighfiessareselectedforeproduction,andmutationoperationsareintroducedt graduallyoptimizethecombinationofhyperparameters,soastoimprovetheperformanceandeficiencyoftheLSTMmodel.In comparison with the experimental resultsof LSTMneural network,the RMSEvalueand MPAEvalueof GA-LSTM neural network prediction results are decreased by 56.7% and 60.3% ,respectively,and the accuracy rate of fault diagnosis is increased by 3.2% .Therefore,GA-LSTMneural network can beusedasa dep learning technologyforthe fault diagnosis of charging pile.
Keywords:charging pile;dataprediction;faultdiagnosis;geneticalgorithm;long short-termmemoryneural network; normalization processing
0 引言
隨著電動汽車銷量逐年增長,電動汽車充電樁作為配套產(chǎn)品也得到快速發(fā)展,其功能越來越完善,智能化程度也越來越高。(剩余9283字)