特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

基于GA-LSTM神經(jīng)網(wǎng)絡(luò)的充電樁故障診斷

  • 打印
  • 收藏
收藏成功


打開文本圖片集

中圖分類號:TN919-34;TP183 文獻標識碼:A 文章編號:1004-373X(2025)16-0097-08

DOI:10.16652/j.issn.1004-373x.2025.16.016

Charging pile fault diagnosis based on GA-LSTM neural network

ZHOU Jin, GAO Tian,WANG Qiang, YIN Zhangcheng, ZHU Jinrong (Collegeof InformationEngineering,Yangzhou University,Yangzhou 225ooo,China)

Abstract:Thechargingdataofelectricvehiclechargingfacilitiesincludesvoltage,current,temperature,power,etc.allof whicharetimeseriesdata,andthedatahasthecharacteristicsofinfluencingtheprevioustimeandasociatingthenexttime. Thelongshort-termmemory(LSTM)neuralnetworkisusedtominethecorelationfeaturesinthedatavolume,andthefeature modelbetweentheworkingdataandthefaultisestablishedtoconductthefaultdiagnosisofchargingpile.Duetotheproblems ofoverfitingandgetingstuck inlocaloptimainLSTMneuralnetworks,ageneticalgorithm(GA)isproposed tooptimizethe LSTMneuralnetwork forfaultdiagnosisofcharging piles.GAisusedtosearch fortheoptimal solutionbysimulating the biologicalevolutionprocessindividualswithhighfiessareselectedforeproduction,andmutationoperationsareintroducedt graduallyoptimizethecombinationofhyperparameters,soastoimprovetheperformanceandeficiencyoftheLSTMmodel.In comparison with the experimental resultsof LSTMneural network,the RMSEvalueand MPAEvalueof GA-LSTM neural network prediction results are decreased by 56.7% and 60.3% ,respectively,and the accuracy rate of fault diagnosis is increased by 3.2% .Therefore,GA-LSTMneural network can beusedasa dep learning technologyforthe fault diagnosis of charging pile.

Keywords:charging pile;dataprediction;faultdiagnosis;geneticalgorithm;long short-termmemoryneural network; normalization processing

0 引言

隨著電動汽車銷量逐年增長,電動汽車充電樁作為配套產(chǎn)品也得到快速發(fā)展,其功能越來越完善,智能化程度也越來越高。(剩余9283字)

monitor