2</sup> 均高于BP-ANN預(yù)測模型的,預(yù)測誤差也低于BP-ANN 預(yù)測模型,結(jié)果表明,基于BP-ANN融合算法的短期電力負荷預(yù)測方法具有良好的應(yīng)用前景,可為電力系統(tǒng)的高效運行和合理規(guī)劃提供有力的技術(shù)支持。-龍源期刊網(wǎng)" />

特黄三级爱爱视频|国产1区2区强奸|舌L子伦熟妇aV|日韩美腿激情一区|6月丁香综合久久|一级毛片免费试看|在线黄色电影免费|国产主播自拍一区|99精品热爱视频|亚洲黄色先锋一区

基于BP-ANN融合算法的短期電力負荷預(yù)測方法

  • 打印
  • 收藏
收藏成功


打開文本圖片集

中圖分類號:TM732 文獻標志碼:A 文章編號:2095-2945(2025)20-0082-04

Abstract:As the scaleandcomplexityof the power systemcontinues toexpand,accurateshort-term power load forecasting hasbecomecrucialtothestableoperation,economicdispatchandenergymanagementof thepowersystem.Aimingatthe possiblelimitationsofBP-ANNalgorithminpredictingshort-termpowerloaddatasuchasasytofallintolocaloptimization andslowconvergencespeed,thispaperproposesashort-termpowerloadforecastingmethodbasedonBP-ANNfusionalgorith. ItisverifiedthroughexamplesthatthecorrelationcoeffientsofGA-BP-ANNandPSO-BP-ANNpredictionmodelsarehigher thanthoseofBP-ANN predictionmodel,andthepredictionerorsare lowerthan thoseofBP-ANNpredictionmodel.The resultsshowthat Short-termpowerloadforecasting methodsbasedonBP-ANNfusionalgorithmhavegoodapplicationprospects and can provide strong technical support for eficient operation and reasonable planning of power systems.

Keywords: particleswarm optimizationalgorithm; power load forecasting; BP-ANN; fusion algorithm; GA-BP-ANN

隨著社會的快速發(fā)展,目前各行各業(yè)用電需求不斷攀升,如工業(yè)生產(chǎn)規(guī)模擴大、居民生活電氣化程度越來越高(各類電器增多等),使得用電負荷呈現(xiàn)快速增長的態(tài)勢。(剩余5262字)

目錄
monitor