基于BP-ANN融合算法的短期電力負荷預(yù)測方法

打開文本圖片集
中圖分類號:TM732 文獻標志碼:A 文章編號:2095-2945(2025)20-0082-04
Abstract:As the scaleandcomplexityof the power systemcontinues toexpand,accurateshort-term power load forecasting hasbecomecrucialtothestableoperation,economicdispatchandenergymanagementof thepowersystem.Aimingatthe possiblelimitationsofBP-ANNalgorithminpredictingshort-termpowerloaddatasuchasasytofallintolocaloptimization andslowconvergencespeed,thispaperproposesashort-termpowerloadforecastingmethodbasedonBP-ANNfusionalgorith. ItisverifiedthroughexamplesthatthecorrelationcoeffientsofGA-BP-ANNandPSO-BP-ANNpredictionmodelsarehigher thanthoseofBP-ANN predictionmodel,andthepredictionerorsare lowerthan thoseofBP-ANNpredictionmodel.The resultsshowthat Short-termpowerloadforecasting methodsbasedonBP-ANNfusionalgorithmhavegoodapplicationprospects and can provide strong technical support for eficient operation and reasonable planning of power systems.
Keywords: particleswarm optimizationalgorithm; power load forecasting; BP-ANN; fusion algorithm; GA-BP-ANN
隨著社會的快速發(fā)展,目前各行各業(yè)用電需求不斷攀升,如工業(yè)生產(chǎn)規(guī)模擴大、居民生活電氣化程度越來越高(各類電器增多等),使得用電負荷呈現(xiàn)快速增長的態(tài)勢。(剩余5262字)