基于貝葉斯優(yōu)化的BiLSTM-Adaboost熱電廠熱負荷預測研究

打開文本圖片集
關(guān)鍵詞:供熱負荷預測;BiLSTM-Adaboost神經(jīng)網(wǎng)絡(luò)預測;貝葉斯優(yōu)化算法;超參數(shù)尋優(yōu);預測精度中圖分類號:TM621.4 文獻標志碼:A 文章編號:2095-2945(2025)20-0001-06
Abstract:Inthispaper,aBiLSTM-AdaboostpredictionmodelbasedonBayesianoptimizationisproposedfortheheatload predictionproblemofthermalpowerplants.First,theefectsofprimarynetworkheatingparametersandmeteorologicalfactorson heatloadareconsideredcomprehensively,andthePearsoncorrelationcoeficientmethodisutilizedtoscrenthemodelinput variables.Secondly,usingthefeatureextractionabiltyofbidirectionallongshort-termmemorynetwork(BiLST)fortieeries data,AdaboostalgorithmisintroducedtointegratemultipleBiLSTMmodelstoimprovetheaccuracyandrobustnessofthe prediction;finaly,Bayesianoptimizationmethodisadoptedtooptimizethehyper-parametersofthemodeltosolvetheproblem ofreducedpredictionaccuracyduetotheperceivedimpropersetings.Simulationexperimentsarecarredoutwiththeactual operationdataofathermalpowerplant in China,andtheresultsshowthattheproposedBayesianoptimizationBiLSTMAdaboost modelhas high predictionaccuracyand stabilityin heatload predictioncomparedwith other network models.
Keywords: heating loadprediction; BiLSTM-Adaboostneural networkprediction;Bayesianoptimizationalgorithm; hyperparameter optimization;prediction accuracy
準確的供熱負荷預測對保障冬季供暖、增強調(diào)峰能力、節(jié)能減排、經(jīng)濟運行具有重要意義
傳統(tǒng)供熱負荷預測對大量歷史數(shù)據(jù)進行擬合計算,然而數(shù)學方法無法應對非線性情況。(剩余7056字)