遙感數據處理中多源數據融合方法研究

打開文本圖片集
中圖分類號:P237 文獻標志碼:A 文章編號:2095-2945(2025)14-0162-04
1,2,3(1.,西安710001;2.陜西省第三測繪工程院,西安71001;3.西安航空學院,西安 710089)
Abstract:Inremotesensing dataprocesing,multi-sourcedata fusion method hasbecomea keytechnologytoimprove the eficiencyandaccuracyof informationextraction.Thispapersystematicalldiscussesthemulti-sourcedatafusionmethodbased onfeaturespaceanddeeplearning,analyzesthediferencebetweenlinearandnonlinearfusionanditsapplicationintheproce offeaturextractionandselection,andfurtherelaboratestheimportanceoffeaturespacedimensionreductiontechnology.Dep learningtechniques,speciallconvolutionalneuralnetworksandself-supervisedlearning,havedemonstratedexcellent performanceinprocessngheterogeneousandmulti-dimensionalremotesensingdata,signficantlyimprovingtheaccuracyand robustnessofdatafusion.Basedonpracticalcases,thispapershowsthespecificefectsofdiferentfusionmethodsonfeature extractionandfusioninmulti-sourcedataprocessng,indicatingthatdeeplearning methodshavebroadapplicationprospectsin the field of remote sensing.
Keywords: remote sensing data; multi-source data fusion; feature space; fusion effect; deep learning
在遙感技術的不斷進步與廣泛應用背景下,多源數據融合已成為提升數據處理精度與豐富信息內容的關鍵手段,遙感數據來源廣泛,涵蓋光學、雷達、激光雷達等多種傳感器,這些數據在空間、時間及光譜分辨率上各具特性。(剩余5629字)